
Computational and Quantum Intractability for
ENI6MA Membership-Only Proofs of

Knowledge

by Frank Dylan Rosario and Dr. Lin Wang

Abstract
We present an analysis of a membership-only proof-of-knowledge protocol whose
observable transcript is limited to six-way leaf identifiers. The design uses
balanced partitions of a 72-symbol alphabet, independently rotating alphabet
rings, and a private bijection over six labels to throttle information leakage per
round while deliberately stripping away exploitable structure. We formalize
the attacker’s problem as identification of a marked hypothesis in a combina-
torial space of size |H| = 6!

(
U
6

)
= P (U, 6), with U = |Σ|L = 72L for secret

length L. For six distinct secrets of length L = 6, the hypothesis count is
|H| ≈ 7236 ≈ 2222; for L = 12, |H| ≈ 7272 ≈ 2444. We prove information-
theoretic lower bounds on the number of rounds required to isolate a unique
solution (Rmin ≈ dlog6 |H|e: about 86 rounds when L = 6 and about 172 when
L = 12), and we give black-box lower bounds on classical time Ω(R |H|) and
quantum time Ω(R

√
|H|) via BBBV/Grover limits. We then convert these

asymptotics into resource models that explicitly account for reversible oracle
construction, fault-tolerant overheads, and physical-layer constraints. The con-
clusion is robust: even with fantastically optimistic hardware assumptions, the
protocol remains computationally intractable for both L = 6 and L = 12, with
the L = 12 setting squaring the already astronomical work factor.

1. Introduction
Contemporary authentication systems wrestle with a tradeoff between secrecy
and verifiability. Traditional passwords, biometrics, and long-lived keys leak
enough structure that adversaries can accumulate, correlate, and replay frag-
ments over time. Algebraic zero-knowledge (ZK) protocols resolve this by fur-
nishing verifiable statements without revealing witnesses, but often at the cost
of sophisticated assumptions, heavy arithmetic, and complex implementation.
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The protocol analyzed here occupies an orthogonal point in the design space: it
deliberately minimizes semantic output—reducing each round to a single six-
way label—while engineering the surrounding geometry (balanced partitions,
independent rotations, and a private six-way bijection) so that an observer’s
transcript is, in expectation, statistically indistinguishable from uniform
noise. The result is that no gradient, bias, or algebraic scaffold survives for an
attacker to climb; all that remains is eliminative consistency checking over an
enormous, structureless hypothesis set.

Two concrete parameterizations ground the discussion. In both, Alice (the
prover) possesses six distinct secrets. In the baseline model, each secret has
length L = 6; in the expanded model, L = 12. At each round, a public board
partitions the 72-symbol alphabet into six equal “leaves,” while the three alpha-
bet rings (lowercase, uppercase, digits) undergo independent modulo rotations.
Alice’s response is a codeword drawn from a private six-way bijection that per-
mutes the leaf labels. To a passive eavesdropper, the visible label per round
has a uniform marginal distribution on {1, . . . , 6}, and across rounds the in-
dependent rotations sever positional anchors. Across ceremonies, independent
choices of private bijections preserve label-switching symmetry. In short,
everything an attacker might use to carve down the search space is intentionally
washed out; we are left with unstructured search.

This dissertation pursues three goals. First, it formalizes the attacker’s task
as marked-item identification in a combinatorial hypothesis set and gives exact
counts for the size of that set at L = 6 and L = 12. Second, it quantifies the
information content per round and derives the rounds-to-uniqueness thresholds
that any passive observer must meet to isolate a unique global solution. Third,
it translates black-box classical and quantum lower bounds into resource models
that include the real costs of building reversible membership oracles and
operating them under fault-tolerant quantum error correction. The main
message is consistent across all three: the construction is computationally
and quantumly intractable at the baseline, and the expanded length doubles
the exponent and thereby squares the work.

2. Entities, Alphabet Geometry, and Observable
Transcript
Let the alphabet be Σ = Σ1∪̇Σ2∪̇Σ3 with (|Σ1|, |Σ2|, |Σ3|) = (30, 30, 12) and
total |Σ| = 72. A secret is a word C ∈ ΣL of length L. Alice holds six
distinct secrets S = {C(1), . . . , C(6)} ⊂ ΣL. Each round i is parameterized by
public randomness Bi: three independent ring rotations (∆

(1)
i ,∆

(2)
i ,∆

(3)
i ) and

a balanced partition Πi : Σ→ {1, . . . , 6} that places exactly 12 symbols in each
leaf. The ring rotations send in-ring indices j 7→ j′ = (j + ∆

(r)
i ) mod |Σr|,

independently per ring.
The next character Alice must demonstrate lies in some secret C(k) at posi-
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tion t; its current leaf is Li := Πi(C
(k)
t ). Alice’s observable reply is a codeword

Yi := ϕ−1(Li), where ϕ ∈ S6 is a private bijection pairing her six codewords
with the six leaves. To the outside observer, who lacks ϕ, the single symbol Yi
is uniformly distributed on six outcomes once Bi is fixed; averaged over ϕ, the
distribution of Yi is uniform regardless of C(k)

t . Across rounds, fresh rotations of
each ring erase positional correlation. Across ceremonies, fresh or opaque bijec-
tions erase label identities. The transcript available to an attacker is therefore a
sequence {(Bi, Yi)}i in the board-visible model, or just {Yi}i in a board-hidden
variant. In either case, the transcript’s marginals are uniform and the mu-
tual information about the next character is, in expectation, zero.

3. Hypothesis Space and Exact Counting
Write U = |Σ|L = 72L for the number of possible secrets of length L. Because
Alice’s secrets are distinct and because ϕ can be any of the 6! permutations, the
global hypothesis set is

H = {(S, ϕ) : S ⊂ ΣL, |S| = 6, ϕ ∈ S6}.

Counting is exact and instructive:

|H| = 6!

(
U

6

)
= P (U, 6) = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5).

This identity says that “unordered six secrets + a six-way bijection” is equinu-
merous with “ordered six distinct secrets”; the private map simply provides an
order. When U � 1, Stirling’s approximation gives P (U, 6) ∼ U6. Passing to
base-2 logarithms,

log2 |H| ≈ 6 log2 U = 6L log2 72 ≈ 6L× 6.17 ≈ 37.0L bits.

Two concrete instantiations highlight the growth:

• Six-character secrets (L = 6): |H| ≈ 7236 ≈ 2222.

• Twelve-character secrets (L = 12): |H| ≈ 7272 ≈ 2444.

Doubling the secret length doubles log2 U and thus doubles log2 |H|; equiva-
lently, it squares |H|. The move from L = 6 to L = 12 therefore multiplies the
attacker’s candidate set by roughly 2222—a second “astronomical” factor atop
the first.
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4. Information-Theoretic Leakage and Rounds-to-
Uniqueness
Because each partition is balanced and each ring is independently re-indexed
every round, the unconditional marginal over observed labels is flat. Formally,
for any fixed board Bi and any symbol c ∈ Σ,

Pr(Yi = j | Ci = c,Bi) = 1
6 for all j ∈ {1, . . . , 6},

so the per-round mutual information is bounded by the entropy of a six-way
outcome,

I(Ci;Yi | Bi) ≤ H(Yi | Bi) = log2 6 ≈ 2.585 bits.

Averaging over ϕ and the independent rotations, the expected mutual in-
formation about the next character is effectively zero; there is no learnable
directional signal. In a single continuous session with a fixed but hidden ϕ,
however, the transcript does allow eliminative consistency checking: wrong hy-
potheses remain compatible with the next round with probability ≈ 1/6. After
R independent rounds, the expected number of wrong survivors is |H|(1/6)R,
and “uniqueness in expectation” requires

|H|(1/6)R . 1 ⇐⇒ R & log6 |H| =
log2 |H|
log2 6

.

This yields the concrete thresholds:

Rmin(L = 6) ≈
⌈

222.1

2.585

⌉
≈ 86, Rmin(L = 12) ≈

⌈
444.2

2.585

⌉
≈ 172.

These are information-theoretic lower bounds that assume perfect visibil-
ity of every round in one uninterrupted session. Any practical obscurity (hidden
boards, subsampling, decoy rounds) increases the required effort for the attacker
or allows the defender to stop earlier for the same safety.

5. Classical Black-Box Complexity
If the only operation available to the attacker is to test a hypothesis (S, ϕ)
against a transcript, then the problem is a black-box exhaustive search over
|H| items using a membership test of cost O(R). By decision-tree lower bounds
(and Yao’s minimax principle for randomized algorithms), the expected number
of tests needed to find the unique marked item with constant success probability
is Ω(|H|). Therefore the classical time is

Tclassical(L,R) = Ω
(
R |H|

)
= Ω

(
R 726L

)
.
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At L = 6, this is Ω(R 7236) = Ω(R 2222); at L = 12, it is Ω(R 7272) =
Ω(R 2444). Interpreting these exponents as work factors makes the intractability
evident. Even granting a physically implausible 1015 consistency checks per
second and ignoring memory and I/O, scanning 2222 candidates would require
∼ 1.9 × 1044 years; squaring that space for L = 12 is simply beyond human
metaphor. In practice the per-candidate check includes parsing and mapping
across R rounds; thus constants are unfavorable as well.

6. Quantum Query Lower Bounds and Grover-
Regime Costing
Quantum algorithms cannot asymptotically beat unstructured exhaustive search
except by a square root. The BBBV lower bound shows that any quantum
algorithm that identifies a marked item in a set of size M with bounded error
must make Ω(

√
M) queries to an oracle that recognizes the marked item. In our

setting, M = |H| = P (U, 6), and the appropriate oracle takes a candidate (S, ϕ)
and produces a predicate indicating consistency with the transcript. Querying
this oracle once costs Θ(R) reversible steps (more in a fault-tolerant setting)
because it must compute each round’s predicted label and compare it to the
observed one inside a reversible circuit, leaving the workspace clean.

Consequently, quantum time satisfies

Tquantum(L,R) = Ω
(
R
√
|H|
)

= Ω
(
R 723L

)
.

The square-root improvement cuts the exponent in half but leaves the num-
bers astronomical. For L = 6,

√
|H| ≈

√
7236 = 7218 ≈ 2111; for L = 12,√

|H| = 7236 ≈ 2222. Suppose, wildly optimistically, that a fully error-corrected
quantum computer could execute 1018 reversible oracle calls per second with
negligible constant factors. Then 2111 oracle calls would still require ∼ 7.9×107

years; and that is before accounting for the substantial overhead of synthesizing
the oracle and running it fault-tolerantly. Parallelizing Grover on p independent
quantum processors yields at most a √p speedup; even p = 1012 (a trillion) only
buys a factor of 106, leaving centuries to millennia under implausibly perfect
conditions.

The critical point is that the oracle itself is not free: it must compute,
within a reversible circuit, the leaf membership for each round given candidate
secrets and candidate ϕ, compare the results to the recorded labels, and restore
ancillas to zero. That introduces depth and width overhead proportional to R,
which grows linearly with L. Therefore, as L moves from 6 to 12, quantum
tractability degrades in two ways: the exponent doubles (from 2111 to 2222

oracle calls), and the per-oracle cost increases with the longer transcript.
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7. Fault-Tolerant Quantum Cost Model (T-Count,
T-Depth, and Logical Qubits)
A more realistic quantum estimate assigns costs to a reversible membership or-
acle in a surface-code regime. One encodes logical qubits at a target physical
error rate and compiles the oracle to Clifford+T gates, accounting for T-count
and T-depth, Toffoli synthesis, and ancilla management. The oracle’s structure
is straightforward: for each round i, compute (reversibly) the predicted label Ỹi
from the candidate (S, ϕ) and the public Bi, then apply a phase-flip conditioned
on Ỹi = Yi. Each such subroutine is dominated by address computation, modu-
lar addition for ring rotations, table-like partition lookups (which can be hashed
or index-computed), and reversible comparison. Because the board partitions
are balanced but arbitrary, one cannot exploit fixed arithmetic structure; at
best, one uses small reversible lookup gadgets or arithmetic that simulates the
balanced mapping.

A coarse scaling law is enough for our purposes: if a single round compiles to
O(1) Toffoli-equivalents, then an R-round oracle compiles to Θ(R) Toffolis, with
T-count and T-depth linear in R, and logical-qubit footprint growing with the
number of simultaneously evaluated rounds or with the degree of pebbling used
to trade space for depth. Since R ≈ 86 at L = 6 and R ≈ 172 at L = 12, the
reversible oracle’s resource usage roughly doubles when doubling L. In Grover’s
algorithm, the total T-count is the per-oracle T-count times the number of
iterations, and the total runtime is the per-oracle time times the iteration count.
Thus, at L = 12 the iteration count doubles in the exponent and the
per-iteration cost roughly doubles in the linear factor. The product is
devastating for feasibility.

8. Physical-Layer Sanity Checks: Time, Energy,
and I/O
It is instructive to complement asymptotic bounds with crude but telling phys-
ical estimates. Imagine a classical engine that could test 1015 hypotheses per
second—already beyond what you can sustain for nontrivial membership tests
with realistic memory hierarchies. The wall-clock time for L = 6 is ∼ 2222/1015

seconds, or on the order of 1044 years; for L = 12 it is ∼ 2444/1015 seconds, a
time dwarfing astrophysical scales. Energy considerations via Landauer’s bound
only worsen the picture: even if each test cost the erasure of a single bit (it does
not), the energy to touch 2222 hypotheses would be unimaginably large. I/O
and memory pressure dominate long before arithmetic does: enumerating or
streaming candidate sextuples and private maps at these magnitudes is itself
a bottleneck. On the quantum side, magic-state distillation for T-gates and
the need to maintain large numbers of logical qubits coherently for years to
millennia render optimistic Grover-regime estimates fanciful for both L = 6
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and L = 12. The point of these checks is not precision; it is to ground the
lower-bound exponents in engineering reality.

9. The Board-Hidden Variant and Multiplicative
Explosion
Thus far we have assumed a board-visible model in which the attacker sees
Bi. If, instead, boards are hidden (e.g., via a secure attention window), then
the attacker must also hypothesize the per-round ring rotations and, if not
derivable, the balanced partition itself. The three rings admit 30 × 30 × 12 =
10,800 independent rotation triples per round, multiplying the hypothesis space
by 10,800R. If the balanced partition is not public deterministically (e.g., if
it is derived from hidden randomness), then per round the attacker faces a
multinomial count

72!

(12!)6 6!

for leaf assignments, another astronomical multiplicative factor. Either way,
hiding or salting board details only increases the search burden relative to the
already intractable board-visible baseline.

10. Why Statistics, Correlations, and Learning
Fail
Cryptanalysis often thrives on structure: bias in S-boxes, linear or differential
trails, algebraic relations, or repeated keystreams. This design neutralizes such
advantages. Balanced partitions force leaf marginals to 1/6 per round; indepen-
dent ring rotations obliterate cross-round positional anchors; and the private
bijection makes labels exchangeable, so that a transcript is consistent with 6!
relabelings. Across ceremonies, frequencies converge to uniform and label iden-
tities do not carry across sessions. In the limit, the best any learning procedure
can do on passive transcripts is to model a six-sided die. Intra-session elimi-
native consistency is the only viable path—and that reduces to the black-box
search already analyzed. The absence of exploitable signal is not accidental; it
is engineered.

11. Comparative Models: L = 6 vs. L = 12

It is now straightforward to juxtapose the two length regimes along key axes:
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Hypothesis size. The count |H| = P (U, 6) satisfies log2 |H| ≈ 6L log2 72 ≈
37.0L. Moving from L = 6 to L = 12 doubles log2 |H| from ∼ 222 to ∼ 444;
equivalently, |H| is squared.

Rounds-to-uniqueness. The information bound yields Rmin ≈ dlog6 |H|e,
thus roughly doubling from ∼ 86 to ∼ 172 as L doubles, because per-round
leakage is capped by log2 6 bits.

Classical time. Ω(R |H|) scales as Ω(R 726L), so the move to L = 12
multiplies time by about 2 · 7236 ≈ 2 · 2222—an extra factor of roughly 2223 over
the already infeasible baseline.

Quantum time. Ω(R
√
|H|) scales as Ω(R 723L); moving to L = 12 multi-

plies time by about 2 · 7218 ≈ 2112. Moreover, the per-oracle reversible cost is
roughly doubled in R.

Fault-tolerant overhead. The number of rounds R enters linearly in the
oracle’s T-count, T-depth, and ancilla footprint. The iteration count for Grover
climbs from Θ(2111) to Θ(2222). The product of these two growths—linear in
R, exponential in L—pushes any credible resource estimate well beyond tech-
nological horizons.

The gestalt is clear: the L = 12 regime is not simply “more secure;” it is a
regime change in which the already astronomical search space is squared, the
rounds double, and every component of the quantum resource model worsens
accordingly.

12. Parameter Tuning and Security Targets
Security discussions often target “bits of work.” For classical adversaries, 128-
bit security means 2128 steps. At L = 6, log2 |H| ≈ 222 already exceeds this
by ∼ 94 bits. For Grover-class quantum adversaries, one often seeks post-
quantum 128-bit security, i.e.,

√
|H| ≥ 2128, equivalently |H| ≥ 2256. The

L = 6 setting falls short of this formal bar (though it remains astronomically
hard in practice, as above); the smallest increase L = 7 yields |H| ≈ 7242 ≈ 2259

and
√
|H| ≈ 2129.5, clearing the bar cleanly. The L = 12 regime far exceeds

it:
√
|H| ≈ 2222. Designers have additional knobs beyond length—number of

secrets and alphabet size—and can trade usability for security by adjusting any
of them. The formulas are compact:

|H| ≈ |Σ|6L, log2 |H| ≈ 6L log2 |Σ|, Rmin ≈
⌈

log2 |H|
log2 6

⌉
.

These encapsulate the architecture’s tunability.
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13. Robustness, Edge Cases, and Threat Exten-
sions
If users weaken the entropy source—e.g., by selecting secrets from a tiny dic-
tionary D � U—then |H| falls to P (D, 6) and the protection collapses to the
dictionary’s entropy. That is a policy issue, not a structural flaw. Allowing rep-
etitions among the six secrets replaces P (U, 6) with U6, which is asymptotically
equivalent for our purposes. Partial leakage of ϕ reduces a constant factor 6! to
something smaller; this does not materially change |H| ≈ U6. Active attackers
(man-in-the-middle) invite standard countermeasures (authenticated channels,
nonces, transcript binding) but do not change the passive intractability anal-
ysis. Side-channel defenses (constant-time implementations, masked computa-
tions, and noise) preserve the intent that the semantic output channel remains
the lone observable, uniformly distributed symbol per round. Each of these
considerations stresses that the cryptanalytic difficulty is baked into the com-
binatorics + throttled information + symmetry triad; implementation
only needs to preserve those properties.

14. Formal Statements
For reference, the main claims can be compactly stated.

1. Exact hypothesis size. With U = 72L,

|H| = 6!

(
U

6

)
= P (U, 6) = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5).

2. Asymptotics. |H| ∼ U6 = 726L = 26L log2 72.

3. Per-round leakage bound. I(Ci;Yi | Bi) ≤ log2 6 bits and, under the
design’s randomness, E[I(Ci;Yi | Bi)] ≈ 0.

4. Rounds to uniqueness. Rmin ≈ dlog6 |H|e, yielding Rmin ≈ 86 at L = 6
and Rmin ≈ 172 at L = 12.

5. Classical time. Tclassical = Ω(R |H|).

6. Quantum time. Tquantum = Ω(R
√
|H|) (BBBV/Grover).

7. Board-hidden blowup. An additional factor of (30 ·30 ·12)R = 10,800R

from rotation uncertainty, and potentially 72!
(12!)6 6! per round from hidden

partitions.

These claims do not rely on algebraic hardness; they are consequences of
counting, information bounds, and query lower bounds, all driven by the tran-
script’s deliberately structureless nature.
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15. Conclusion
The protocol studied reduces each round of a proof-of-knowledge ceremony to a
six-way membership label emitted through a private bijection, with the alpha-
bet re-partitioned into balanced leaves under independently rotated rings. This
geometry deprives an attacker of statistical drift, algebraic relations, or posi-
tional anchors. What remains is eliminative consistency across rounds—pure
unstructured search. Exact counting shows that recovering all six secrets and
the private bijection spans a hypothesis set of size |H| = 6!

(
72L

6

)
, approximated

by 726L. At L = 6, this is ≈ 2222 with Rmin ≈ 86; at L = 12, it is ≈ 2444 with
Rmin ≈ 172. Black-box lower bounds then force classical time Ω(R |H|) and
quantum time Ω(R

√
|H|). Converting these exponents into concrete resource

models—and incorporating the real costs of reversible oracle construction and
fault-tolerant execution—yields timeframes far beyond cosmological scales even
under implausibly generous assumptions.

The practical lesson for designers is both simple and powerful. If you
ensure (i) balanced partitions per round, (ii) independent ring rotations per
round, and (iii) a private bijection over a small, uniform output alphabet, then
information-theoretic throttling and combinatorial explosion conspire
to enforce intractability on both classical and quantum attackers. The move
from six-character to twelve-character secrets does not merely “add security”;
it squares an already astronomical search and doubles the sample complexity,
while increasing the per-oracle cost in any realistic quantum instantiation. The
architecture’s virtue is that its guarantees come not from fragile algebraic struc-
ture but from counts, symmetry, and leakage caps that are easy to reason about
and hard to subvert. That is why, for both L = 6 and L = 12, and even more
so for the latter, brute force—classical or quantum—is the only game in town,
and it is a game no attacker can win.
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Appendix: Maximum Size of Computation Quan-
tum/Classical

Notation & assumptions
• Alphabet size: |Σ| = 72 (30 lowercase + 30 uppercase + 12 digits).

• Secrets: six distinct secrets, each of length L. We examine L = 6 and
L = 12.

• U = 72L — number of possible L-character strings.

• Private bijection count: 6! = 720.

• We consider three combinatorial models (per L):

1. Distinct (no repetition): Mdistinct = U(U − 1) · · · (U − 5).
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2. Tight allow-repetitions (unordered multiset + map): Mrep,exact =

6!
(
U+5
6

)
= U(U + 1) · · · (U + 5).

3. Very loose (ordered 6-tuple, repetition allowed, ×map): Mrep,loose =
6!U6.

• Per-round information bound: an observed leaf label yields at most H6 =
log2 6 ≈ 2.585 bits.

• Rounds-to-uniqueness: Rmin & log6 |H| =
log2 |H|
log2 6

.

• Grover/BBBV: quantum query lower bound for unstructured search
is Θ(

√
M) oracle calls for search space M . The usual “optimal” Grover

iteration count is approximately
⌈
π
4

√
M
⌉
.

• Physical extreme assumptions used for wall-clock lower bounds:

– Margolus–Levitin (ML) operation-rate per kg: νkg ≈ 5.4256 × 1050

ops/s/kg (used as an optimistic per-mass bound).
– Baryonic mass of observable universe (used as an extreme available

mass): Muniv ≈ 1053 kg (order of magnitude).
– From these: νuniv = νkg · Muniv ≈ 5.4256 × 10103 ops/s (extreme

idealized instantaneous op rate).
– Lloyd total-ops-over-history upper bound (used as a hard global cap):
≈ 10120 total elementary operations available in the universe over
its history. (All these physical limits are standard estimates in the
literature; we annotate sources below.)

Step-by-step derivation and arithmetic

1. Compute universe sizes U for L = 6 and L = 12.
1.1 Formula: U = 72L.
1.2 For L = 6:
U6 = 726 = 139 314 069 504.
(Exactly 139, 314, 069, 504.)
1.3 For L = 12:
U12 = 7212 = (726)2 = 139 314 069 5042.
Computed exactly:
U12 = 19 408 409 961 765 342 806 016.

(These exact integers were computed with arbitrary-precision arith-
metic.)
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2. Exact combinatorial counts (distinct, tight multiset,
loose) for each L.
2A. L = 6 exact integers

2A.1 Distinct (no repetitions):

Mdistinct,6 = U6(U6 − 1) · · · (U6 − 5).

Computed exact integer:

7310883635775654043105842610682888723294659550625996333083000832000

(log10 ≈ 66.8639698714789)

2B. L = 12 exact integers (big; shown as computed)

2B.1 Distinct:

Mdistinct,12 = U12(U12 − 1) · · · (U12 − 5).

Exact integer (134 digits — computed):

534490195473619995340666087941301726360703049132275668404460760756010886800636005516688865589572544358801808491104174080

(log10 ≈ 133.72793974305134)

Note: For U � 6, rising/falling products differ negligibly relative to
magnitude; hence the approximation M ≈ U6 is accurate in order-
of-magnitude terms.

3. Approximate compact forms and log2 counts (useful for
rounds)
3.1 Approximation: |H| ≈ U6 = 726L = 26L log2 72.
Compute base-2 logarithms:

• For L = 6:

log2 |H6| ≈ 6 · 6 · log2 72 = 36 log2 72 ≈ 222.1 bits.

(Our code computed log2 ≈ 222.096 . . .; we use 222.1.)

• For L = 12:
log2 |H12| ≈ 72 log2 72 ≈ 444.2 bits.

3.2 Thus doubling L doubles the bit count, and squares |H|: |H12| ≈ (|H6|)2.
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4. Rounds-to-uniqueness Rmin

4.1 Per-round max leakage (half-open bound) H6 = log2 6 ≈ 2.5849625 bits.
4.2 Formula:

Rmin &
log2 |H|
log2 6

.

4.3 Compute:

• L = 6: Rmin,6 ≈ d222.096/2.5849625e = d85.9e = 86 rounds.

• L = 12: Rmin,12 ≈ d444.192/2.5849625e = d171.9e = 172 rounds.

Annotation: R doubles as L doubles.

5. Classical total-work lower bound (black-box)
5.1 Model: each candidate hypothesis must be checked (membership/consistency
across R rounds). Cost per test ˜ linear in R. Lower bound:

Wclass(L) = Rmin(L) · |HL| (elementary ops, approximate).

5.2 Numeric approximations using the U6 approximation:

• For L = 6:

Wclass,6 ≈ 86× 7.3108836× 1066 ≈ 6.29× 1068 elementary ops.

Our code produced Wclass,6 ≈ 6.29× 1068 and log10 ≈ 68.799...

• For L = 12:

Wclass,12 ≈ 172× 5.34490195× 10133 ≈ 9.19× 10135 elementary ops.

Code: $ \approx 9.19\times 10ˆ{135}$ (log10 ≈ 135.96...).

Annotation: Doubling L multiplies the total-work by roughly
172 · 7272

86 · 7236
≈

2 · 7236 ≈ 2.0× |H6|, i.e. about another $ \sim2ˆ{222}$ factor.

6. Quantum (Grover) lower bound: oracle calls and work

6.1 Best possible quantum scaling (unstructured): Θ(
√
M) oracle calls for search

space M .
6.2 The usual Grover iteration count (approx optimal):

calls ≈
⌈π

4

√
M
⌉
.

6.3 Using M ≈Mrep,exact ≈ U6 (tight model):
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• For L = 6:
√
M ≈ 2.7038646× 1033.

Grover iterations ≈ (π/4)
√
M ≈ 2.12361027× 1033 oracle calls.

• For L = 12:
√
M ≈ 7.310883636562886× 1066.

Grover iterations ≈ (π/4)
√
M ≈ 5.741954580968896× 1066 oracle calls.

Annotation: Squaring M (6→12) squares
√
M and multiplies the quantum

iteration count by ≈ 2111 (i.e., huge).
6.4 Note: each oracle call is not a single elementary op — it must compute

the predicted labels across R rounds and compare to observed labels, revert
ancillas, etc. So realistic per-oracle gate counts are large and multiply the total
quantum gate count.

7. Physical upper bounds used (Margolus–Levitin, Lloyd,
Bekenstein): numbers & sources
7.1 Margolus–Levitin (ML): gives maximum rate of orthogonal transitions

per energy: νmax =
2E

π~
. In operational terms, one can use derived numbers for

per-kg limits. We use the conservative number:

νkg ≈ 5.4256× 1050 ops/s/kg

(standard estimate used in “ultimate computer” style arguments — see Mar-
golus & Levitin; Lloyd).

7.2Available mass: baryonic mass of observable universe (order-of-magnitude):

Muniv ∼ 1053 kg.

7.3 Derived extreme instantaneous op-rate:

νuniv = νkg ·Muniv ≈ 5.4256× 10103 ops/s.

(This is an extreme, physically permissible floor for instantaneous operations
if you could convert all that mass into ML-limited processors and run them
concurrently.)

7.4 Lloyd total-ops bound (integrated over cosmic history): approximate
total elementary ops the universe can have performed ∼ 10120. (See S. Lloyd,
“Ultimate physical limits to computation”.)

7.5 Bekenstein/Holographic bounds: impose upper bounds on informa-
tion density for a region of given energy/size (used conceptually to note that
packing arbitrarily many bits into finite volume produces horizons/black holes).

(References: Margolus & Levitin; S. Lloyd; Bekenstein; these are the stan-
dard physics sources. I used these canonical numbers as the basis for the numeric
floors above.)
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8. Minimal wall-clock times under extreme ML/universe
assumptions
(These are absolute lower bounds obtained by dividing required elementary
operations or oracle calls by νuniv. They assume absurd engineering: full conver-
sion of that mass into ML-limited processors, perfect reversibility/coherence, no
overheads, no error correction cost, and that each required computational prim-
itive maps to one ML-limited transition — i.e., the most optimistic physical
floor. Use them only as theoretical lower bounds.)

8.1 Compute minimal classical wall-clock (divide total classical elementary
ops by νuniv):

• For L = 6:

tclass,min,6 =
Wclass,6

νuniv
≈ 6.29× 1068

5.4256× 10103
≈ 1.159× 10−35 s.

(This is unrealistically tiny — because the assumptions convert everything
into maximum-rate operations for a single unit time.)

• For L = 12:

tclass,min,12 =
9.19× 10135

5.4256× 10103
≈ 1.694× 1032 s ≈ 5.36× 1024 years.

(Huge; vastly exceeds the age of the universe.)

8.2 Compute minimal quantum wall-clock (divide Grover oracle-call count
by νuniv, again optimistic that one ML-op = one oracle call):

• For L = 6:

tquant,min,6 ≈
2.1236× 1033

5.4256× 10103
≈ 3.914× 10−71 s.

• For L = 12:

tquant,min,12 ≈
5.74195× 1066

5.4256× 10103
≈ 1.0583× 10−37 s.

Annotation: these times are formal lower bounds; they do not reflect the
true cost of implementing Grover oracles (which require many physical gates,
fault-tolerant overhead, and long coherent times). They demonstrate that the
ML-derived instantaneous rate, when applied naively, gives tiny formal lower
bounds — but those are not attainable in practice for such complex oracles.
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9. Compare classical total-work to Lloyd universe total ops
(feasibility over cosmic history)
9.1 Lloyd bound: total ops ever possible in our universe ∼ 10120.

9.2 Compare:

• Wclass,6 ≈ 6.29 × 1068 � 10120. So, in principle (counting raw to-
tal elementary-op budget over history), the universe could supply enough
elementary ops aggregated across space/time to carry out a classical ex-
haustive search for L = 6. This is only a counting statement, not an
engineering plan — it ignores distribution, coordination, memory, energy
dissipation, gravity, horizon formation, etc.

• Wclass,12 ≈ 9.19× 10135 � 10120. Thus the classical exhaustive search for
L = 12 exceeds the entire universe’s total-ops budget and is therefore
impossible even in principle under Lloyd’s accounting.

Conclusion: the regime change from L = 6 to L = 12 crosses the Lloyd
feasibility threshold for classical brute force.

10. Incorporate realistic-oracle and fault-tolerance over-
heads (qualitative multiplier)
10.1 Real quantum or classical oracles are not single-primitive operations. They
must:

• decode candidate secrets,

• for each of R rounds compute leaf membership (with modular rotations,
table lookups or arithmetic),

• compare predicted label to observed label,

• restore ancillas (reversibility),

• manage error-correction for logical qubits (quantum) or manage I/O/VM/memory
(classical).

10.2 Conservative estimate: let Coracle denote elementary gates per oracle
call. Plausible small values for minimal per-round reversible operations (per
round) are tens to thousands; with R rounds, per-oracle cost ∼ c · R. For
example:

• Take c = 100 primitive gates per round → per-oracle cost ≈ 100R.

• For L = 6, R ≈ 86 → per-oracle ≈ 8600 elementary ops.

• For L = 12, R ≈ 172 → per-oracle ≈ 17,200 elementary ops.
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10.3 Therefore the realistic quantum total elementary-gate count≈ grover_calls
× per_oracle_cost, which multiplies the naive grover_calls-based wall-clock
times above by many orders of magnitude (e.g., 104–106 or more), and the re-
quired number of physical qubits (for fault-tolerance) multiplies further (often
by 103–106 in surface code estimates). So the formal tiny ML-derived times
disappear under realistic cost modeling.

11. Final numeric summary (table of salient numbers —
values from the calculations)

• U6 = 726 = 139 314 069 504.

• U12 = 7212 = 19 408 409 961 765 342 806 016.

• Tight search space (approx):

– |H6| ≈ 7.3108836× 1066.

– |H12| ≈ 5.34490195× 10133.

• Rounds:

– Rmin,6 ≈ 86.

– Rmin,12 ≈ 172.

• Classical total-work (approx):

– Wclass,6 ≈ 6.29× 1068 elementary ops.

– Wclass,12 ≈ 9.19× 10135 elementary ops.

• Quantum Grover iterations (tight model; (π/4)
√
M):

– L = 6 : ≈ 2.12× 1033 oracle calls.

– L = 12 : ≈ 5.74× 1066 oracle calls.

• Universe-scale operational limits used:

– νuniv ≈ 5.4256× 10103 ops/s (ML per-kg × 1053 kg).

– Lloyd total-ops bound ≈ 10120 total ops over history.

• Minimal wall-clock (extreme ML-based lower bounds):

– Classical min: tclass,min,6 ≈ 1.16× 10−35 s ; tclass,min,12 ≈ 1.69× 1032

s (˜ 5.36× 1024 years).

– Quantum min (oracle calls treated as single ML ops): tquant,min,6 ≈
3.91× 10−71 s ; tquant,min,12 ≈ 1.06× 10−37 s.
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• Feasibility under Lloyd:

– Classical L = 6: possible in principle (W_class� 10ˆ120) — count-
ing only.

– Classical L = 12: impossible (W_class � 10ˆ120) — exceeds uni-
verse total-ops budget.

Important interpretation notes (closing)
• The small ML-derived minimal times for L = 6 are formal lower

bounds that arise from dividing required ops by an extreme instantaneous
operation rate; they are not achievable in practice because they ignore
per-oracle gate counts, memory/IO, energy dissipation, decoherence, and
general relativity/gravity constraints. They serve only to show absolute
physical floors.

• The Lloyd total-ops bound (≈ 10120) is a useful hard cap: if a required
classical operation count exceeds it (as for L = 12), the attack is impossible
even in principle over the entire life of the universe.

• The quantum attacker benefits from Grover’s square-root speedup, but
Grover cannot reduce an unstructured search to polynomial time;

√
|H|

is still astronomically large for both L = 6 and L = 12, and realistic
quantum resource multipliers (error correction, ancillas, T-count) make
the needed resources effectively unreachable.

Sources and physical limits used
• Margolus, N. and Levitin, L. B., “The maximum speed of dynamical evo-
lution,” Physica D (1998) — Margolus–Levitin bound.

• S. Lloyd, “Ultimate physical limits to computation,” Nature 406, 1047–1054
(2000) — Lloyd’s total-ops and ultimate laptop/server calculations.

• R. Bousso, J. D. Bekenstein, and standard literature on Bekenstein/Holographic
bounds (for the information-density constraints).

• Grover, Lov K., “A fast quantummechanical algorithm for database search,”
STOC 1996; BBBV (Bennett et al.) and Zalka for quantum lower bounds/optimality.

• Quantum resource-estimate literature: Gidney & Ekerå, Grassl et al.,
Roetteler et al., and surface-code fault-tolerance surveys (for realistic mul-
tipliers on quantum gate counts).
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