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For challengers who worry that (1) an attacker can learn the password and
the private map by watching multiple successful logins, or (2) a determined at-
tacker can randomly guess both password and private hologram. We describe
why neither path works, not mathematically, not statistically, not com-
putationally, and not physically.

Introduction
Most people carry around a mental picture of authentication that comes from
passwords and PINs: you type a fixed string, a computer checks it, and you’re
in. If a camera, keylogger, or phishing page captures that string, game over.
From within that picture, a natural fear follows: “If an attacker watches
enough successful logins, they’ll eventually learn the secret, or they
can just keep guessing until they hit it.” This essay tackles those worries
for the ENI6MA rotating-ring method and explains, in minimal mathematics
and plain language, why both intuitions are wrong, not just in theory, but in
practice and even in principle.

ENI6MA asks you to prove knowledge of a secret without exporting the
secret. Imagine a single alphabet arranged on a ring, letters around a clock.
Each login consists of a few rounds. At the start of every round, the system
rotates the ring by a fresh, unpredictable amount and paints the circle into C
zones (like colored slices). Your secret is a sequence of letters. To advance a
round, you indicate which zone currently contains the next letter. Crucially,
you do not say the zone number out loud; you emit a witness token (a word,
icon, or gesture) drawn from a set only you understand because you keep a
private map that ties tokens to zone indices. Outsiders can watch the layout
and hear the token, but they don’t know how that token translates to a zone,
and the layout changes again in the very next round.

Two design principles follow. First, ephemerality: because rotations are
fresh and time-tied, yesterday’s geometry won’t return; a recording of yester-
day’s success is a souvenir, not a skeleton key. Second, masking: witnesses
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are public labels without a legend; even perfect notes about what was said do
not reveal which zone was meant. Those two facts already weaken the everyday
intuition that “watching more reveals more.” M̂ = Private Map

We address two naive objections and challenges. The first addresses Obser-
vation: the claim that, with enough recorded sessions, an attacker can recon-
struct both the password and the private map. We’ll show why the observable
data, layouts and tokens, have the same statistical behavior no matter which
secret you used. When the distribution of what you can see doesn’t depend on
the secret, no amount of watching creates a signal where none exists. Frequency
tricks don’t bite because rotations spread all letters evenly across zones over
time; correlation tricks don’t bite because each round is independent; alignment
tricks don’t bite because the private map never leaks and the ring keeps moving.
Even sophisticated machine learning only rediscovers that the layout generator
is random; it does not uncover your secret.

The second argument addresses Guessing: the idea that a determined at-
tacker can brute-force the password and the map. Here the protocol is engi-
neered to be hostile to luck. The space of possibilities (secrets of length L over
N letters, times C! private maps) grows explosively, while the chance of a blind
guess passing L rounds is roughly (1/C)L, tiny by design. Add in cryptographic
randomness that drives the rotations, and the search balloons beyond what
computers, even fantasy-level ones, could attempt in the lifetime and energy
budget of a civilization. Rate limits then turn “astronomically unlikely” into
“practically impossible.”

Along the way, the essay introduces a few gentle ideas, uniform rotation
(every letter spends equal time in every zone), independence (each round’s
geometry is fresh), and unidentifiability (many different pairs of secret and
private map can “explain” the same recording). You won’t need heavy algebra;
the goal is clarity, not technical bravado. We’ll lean on simple analogies: a dance
that must match tonight’s song; a museum rehung overnight; six unlabeled
buttons that make six sounds only you have mapped to numbers.

The thesis is simple: ENI6MA turns a secret from a possession (a reusable
string that leaks on contact) into a performance (a short, per-session demon-
stration in a changing world). Recordings of past performances don’t open fu-
ture doors. Guessing the right performance is both improbable by construction
and infeasible in our universe. That is why the two worries, learning by watch-
ing and winning by guessing, fail here: not mathematically, not statistically, not
computationally, and not physically.
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“Why Recording Valid Proofs Won’t Help”: Obser-
vation and Guessing Both Fail Against ENI6MA’s
Rotating-Ring Authentication Cypher.

A quick, plain-language primer (so we’re talking about the
same thing)
Imagine the alphabet printed once, in a fixed circular order, like letters around
a clock. Each login is a short ceremony split into rounds. At the start of
each round, the verifier (the system) secretly rotates the ring by a fresh,
unpredictable amount and then paints the circle into C zones (think colored
slices). Your secret is a sequence of letters. To prove you know it, in each
round you simply indicate which zone currently contains the next letter of
your secret.

There is one more ingredient: a private map between zone numbers and the
witness tokens you actually present (spoken words, button icons, gestures).
Outsiders can hear or see the witness tokens you emit, but they don’t know
how those tokens correspond to the zones they’re watching on the screen or
tabletop. Said differently, your “UP” might mean zone 3 to you, but nobody
else knows that mapping.

Two design consequences are crucial:

1. Ephemerality. The layout (which letters are in which zones) changes
every round, and it’s regenerated from fresh randomness tied to time.
Yesterday’s successful path is useless today.

2. Masking. Outsiders observe only tokens (“UP”, “LEFT”, etc.), not the
underlying zone indices. Without your private token→zone legend, the
tokens are just unlabeled categories.

With that picture in mind, let’s engage the two worries head-on.

Objection [1]: “If an attacker records enough valid
logins, they’ll reconstruct the password and the
private map.”
This sounds plausible if you imagine traditional passwords, where watching
keystrokes really does help. Here, it doesn’t. The reason is simple but deep:
what the attacker can record has a probability distribution that does
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not depend on your secret. When the observable data have the same distri-
bution no matter which secret you chose, no amount of watching creates signal
out of noise.

Let’s unpack that in everyday terms.

What the camera actually captures
A camera (or a person taking notes) can record two things per round:

• The layout, which letters fell into which colored zone this round after the
system’s rotation.

• Your witness token, the public label you emitted (e.g., “UP”), which is
secretly tied, via your private map, to the zone you meant.

They can also note whether the overall attempt passed or failed.
That’s it. They do not learn your private token→zone map, and they cannot

reuse the recorded performance later because the next session’s geometry will
be freshly regenerated.

Why statistics don’t accumulate signal
The core trick is the rotation. If each round’s rotation is unpredictable and
independent of previous rounds (which the system ensures), then every letter
spends equal time in each zone across rounds. If there are six zones,
your letter is in each zone about one-sixth of the time. No letter prefers any
zone, and the sequence of zones a particular letter visits is just a string of fair,
independent draws.

When you speak a witness token, you’re just relabeling that fair draw via
your private map. Outsiders don’t know the map, so the tokens they hear are
also just fair, independent draws over the token set. It doesn’t matter whether
your next secret letter is “E” or “Z”, from the outside, the statistics of what you
say look the same.

Put starkly: an observer’s data look identical no matter which secret
you used. If every secret produces the same observable pattern, no amount
of observing distinguishes secrets. Collecting more videos grows the pile of
data but not the information about your secret.
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“But I’ll do frequency analysis!”
Classic frequency attacks count how often symbols appear. That’s how code-
breakers attack simple substitution ciphers. Here, frequency analysis has no
bite:

• Because the ring is randomly rotated each round, each letter lands in each
zone equally often.

• Because outsiders don’t know your private map, they cannot align a token
(“UP”) with a specific zone (“red”) across rounds.

• Result: token frequencies are flat and uninformative. Every secret induces
the same flat histogram.

“What about correlations, like bigrams (‘T’ often followed
by ‘H’)?”
Correlations don’t survive either. The system rotates the ring independently
each round, so the zone for the next letter is independent of the zone for the
previous letter. Even repeated letters (like the double “O” in “NOODLE”) won’t
show up as a pattern: each “O” occurs under a different rotation, so their zones
(and thus their tokens) are independent draws again. The famous fingerprints
that cryptanalysts exploit simply don’t appear.

“Okay, but I see the layouts and the tokens, can’t I align
them over time?”
To align tokens to zones, you need a stable anchor: some way to say “this token
always meant that zone.” The protocol denies you that anchor in two ways:

• Private map. The mapping from tokens to zone numbers is secret and
never leaves the user. You’re hearing labels without a legend.

• Fresh rotations. Even if you temporarily guess a token’s meaning in
one round, the next rotation moves every letter in lockstep to new zones.
Your guess is immediately scrambled.

Even clever cross-round stitching doesn’t stick. Each round is a fresh coin
flip from your vantage point. There is nothing to accumulate.

The identifiability trap (why many “explanations” fit the
same video)
There’s a deeper snag for the eavesdropper: many different pairs of (secret,
private-map) can “explain” the same observed tokens after the fact. Swap two
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token labels in your private map, and you can swap the corresponding letters
in the hypothesized secret to match the same transcript. This built-in sym-
metry means the outside observer can never pin down a unique answer, even
if they entertained wild brute-force reconstructions. They end up with a cloud
of equally plausible stories, all related by relabeling. In statistical terms, the
model is unidentifiable from passive data.

“But I have machine learning models!”
A perfect classifier can’t extract information that isn’t in the inputs. If the
layout and token sequences are statistically independent of your secret (and
that’s what the protocol ensures), then any learning system will simply redis-
cover properties of the layout generator, not the user’s secret. More data just
sharpens the estimate of a distribution that doesn’t depend on the secret. You
don’t beat a zero-information channel with more samples.

“What if I record for a very, very long time?”
You’ll confirm that tokens look uniformly random and that the system keeps
rotating the ring freshly each round. That’s it. When the expected pattern
is flat, the law of large numbers only gives you a flatter flat line. Watching
forever does not conjure structure out of noise.

If you’re worrying about a tiny imperfection, like some zones occasionally
having one extra character when the alphabet doesn’t split evenly, two notes
calm that fear:

• The bias is microscopic (at most “one extra out of the whole alphabet”),
and you don’t know which token corresponds to which zone any-
way.

• If anyone still frets, implementations can pad the alphabet (add a few
dummy symbols) so zones are exactly the same size. The microscopic
wrinkle disappears entirely.

The replay myth
A cousin of the “watch more” claim is “just replay the successful session.” That
fails by design. A replay would need the next session’s ring to rotate by the
same secret amounts as last time. Because rotations are derived from fresh ran-
domness tied to time, the chance of an accidental exact repeat is so small that,
in practice, it never happens. Yesterday’s performance is a fossil: interesting to
watch, inert against today’s door.

Bottom line for Worry [1]
The observable world, layouts and tokens, has the same statistics for every se-
cret. Without a difference in distribution, there is nothing to learn, no matter
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how long you watch. That’s the end of the observation attack: not mathemat-
ically (no dependence), not statistically (no signal), not computationally
(no algorithm can compute what isn’t there), and not physically (no lab, no
camera, no GPU changes the fact that the channel carries zero information
about the secret).

Objection [2]: “Even if observation doesn’t help,
can’t a determined attacker just guess the pass-
word and the private map?”
Now we switch from “learning by watching” to “forcing with brute force.” Two
levers exist: guess the secret; guess the private map. We’ll show that the com-
bined space is explosively large, the per-attempt success probability is inten-
tionally microscopic, and the resource demands to “just try them all” blow past
the limits of computation, energy, and time.

How big is the guessing space?
Even without equations, the sizes balloon fast:

• If your secret is a sequence of length L over N letters, there are NL possible
secrets. That grows exponentially with length.

• The private map from C zones to C tokens is a permutation, which
means there are C! (C factorial) different maps. Even for modest C (say
6 or 8), that’s hundreds to thousands of possibilities for the map alone.

To guess both, an attacker faces the product: “secrets × maps.” Take a
friendly example: letters N = 26, secret length L = 8, zones C = 6. The total
is in the trillions. Increase the length to 10 or 12, or raise C to 8 or 10, and
the count rockets into numbers that simply can’t be enumerated in any sensible
time.

And remember the identifiability trap from above: multiple pairs (secret,
map) can explain the same observed history. Even if someone tried to rule
out candidates by comparing to recordings, they’d be left with a huge herd of
equally plausible survivors rather than a single winner. Enumeration doesn’t
converge to “the truth”; it converges to a swamp.

The per-attempt success chance is engineered to be tiny
Every round, a blind guesser picks a token hoping it matches the zone containing
your next letter. With C zones, the chance per round is 1 out of C. Over L
rounds, the chance you get every round right is about (1/C)L. For six zones
across six rounds, that’s roughly one in a million. And that’s before basic
rate-limiting (“you get only a few tries per hour”) or lockouts.
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The protocol also uses cryptographic randomness (like a large secret seed)
to generate the rotations, which adds another protective layer. Even if someone
somehow guessed all L tokens correctly, they would still need their attempt to
match the cryptographic state that defines the exact geometry; the chance of
stumbling into that match is effectively zero. You don’t “luck into” a 256-bit
secret by guesswork.

“But computers are fast! We’ll parallelize.”
Let’s give the attacker more credit than they deserve and do a back-of-the-
envelope calculation.

• A cutting-edge supercomputer can do around a quintillion operations per
second (that’s 1018). Run it flat-out, 24/7, for 30 years (˜109 seconds),
and you get ˜1027 operations.

• To search a 256-bit cryptographic space (the seed that drives rotations),
you’d need on the order of 2256 tries on average, about 1077. That’s
fifty orders of magnitude more than your whole 30-year exascale run can
deliver.

• “Okay, so we’ll use a billion such supercomputers.” You’d still be short by
forty orders of magnitude.

That’s before you pay for storage, networking, cooling, and the small matter
of having a billion exascale machines. Which you don’t.

Energy, heat, and the laws of physics
Even if somebody found the money for a planetary-scale data center, energy
kills the plan. Real computers erase bits (a lot of them). Erasing information
produces heat, there’s a minimum energy cost per erased bit baked into physics.
Comb through numbers like 1077 attempts, and you’re staring at energy budgets
so outrageous that, figuratively (and depending on assumptions), you’d boil
oceans long before you finish. This isn’t hyperbole; it’s the unavoidable bill of
doing that much irreversible computation. The planet becomes the bottleneck.

“What about quantum computers?”
A fair question. Quantum search (Grover’s algorithm) can quadratically speed
up guessing for some problems. Quadratic sounds big, but it’s not magic. Halv-
ing the exponent of an astronomical number still leaves an astronomical number.
If your cryptographic seed is 256 bits, Grover’s makes it “like” 128 bits, still way
out of reach with realistic error-corrected quantum machines. Protocols sim-
ply choose parameters (e.g., 256-bit security and adequate rounds) that remain
comfortable against such speedups. Meanwhile, the observation channel still
carries zero information, quantum or not.
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“Maybe I don’t need the seed; I’ll guess only the secret and
the map.”
Even that is rough. With secrets of length 8–12 and moderate alphabets,
the number of possibilities is already massive, and the per-attempt acceptance
chance (1/C)L keeps you locked out almost always. Rate-limiting turns “prob-
ability of rare luck” into “effectively never in anyone’s lifetime.” You might get
a fluke once in tens of millions of tries; you won’t be allowed tens of millions of
tries.

The human factors that do matter, and are controlled
The only practical way to weaken guess resistance is to mess with the param-
eters:

• Make L too small (too few rounds).

• Make C too small (too few zones).

• Let people reuse the same session geometry (no fresh rotations).

• Leak the private map by accidentally labeling tokens with on-screen colors
or positions.

Competent implementations avoid these pitfalls. Choose reasonable param-
eters, keep rotations fresh, keep the token→zone map private, and the guess
attack becomes a non-starter both in math and in the real world.

A sanity check: “Could someone ever get lucky?”
Luck exists, and lotteries sell tickets for a reason. But the protocol is designed so
the “jackpot” odds per attempt are so low that, with basic throttling, nobody
sees a win in practice. You’re more likely to see hardware failures, power outages,
or policy lockouts than a successful blind forge.

Bottom line for Worry [2]
Brute force requires exploring an explosive space (secrets × maps × crypto-
graphic states) while each login attempt has a tiny success probability and the
system throttles attempts. The needed computation dwarfs our machines; the
energy and heat dwarf our planet’s patience. Not computationally (too big),
not physically (too hot, too long), not statistically (per-attempt odds stay
tiny), and, for good measure, not mathematically (the protocol’s construction
sets these odds by design).

The deeper reasons both worries miss the mark
It helps to name the conceptual pivots that make this style of authentication
behave so differently from passwords.
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From “possession” to “performance”
A password is an object you can copy, see it once and you own it. Here, identity
is a performance: demonstrating that you can navigate today’s geometry with
your private legend. Performances don’t replay. A recording isn’t a key; it’s a
souvenir of a show that has ended.

Global motion: a single change moves everything
Because the ring rotates as a whole, a tiny change (one more “tick” of rotation)
moves every letter. That “rigid body” motion smears out any local pattern
you might hope to track, there’s no single letter that stands still long enough for
you to correlate against it. Any small bias you thought you found would have
to move with the whole ring ; it doesn’t. That’s why frequency and correlation
attacks find no foothold.

The private legend that never leaks
You can’t turn what you hear (“UP”, “DOWN”, “LEFT”, . . . ) into zone numbers
without the private legend. The protocol never shows it, never stores it server-
side, and never encodes it in any UI metadata an observer could latch onto.
Without that mapping, tokens are just unlabeled categories; interchangeable,
unalignable, unhelpful.

Anti-replay “inside” the math, not bolted on
Plenty of systems try to block replay by adding fences (timestamps, IP checks,
limits). This design builds replay resistance into the geometry. Change the
time → change the rotation → change the manifold → invalidate yesterday’s
path. The attacker never gets a second use out of a first success.

Auditability without risk
You might worry that if recordings are useless to attackers, they’ll be useless
to auditors. The opposite is true. The verifier can keep receipts (the non-
secret parameters that define each session’s geometry), enough for an auditor
to check that every witness token really matched a zone containing the right
letter, without keeping any reusable secret, and without knowing the private
map. That’s “trust, but verify,” without creating honeypots.

Active attacks, and why they don’t rescue the two
worries
So far we discussed passive observation and brute force. What if an attacker
tries to relay traffic (a phishing site) or stand in the middle?
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• A relay still faces the fact that the real verifier uses its own fresh rotations
tied to its own clock and seed. The imposter cannot keep the fake and the
real geometry synchronized across rounds.

• There are variants where the verifier also emits a witness (a “mutual
dance”). A middleman then has to fake two private maps consistently.
That’s not doable without knowing private maps they were never shown.

These are engineering choices, not magic. But they show that even “fancier”
attacks are still blocked by the same bones: freshness, private legends, and
geometry that the attacker cannot control or predict.

Practical guidance that keeps the guarantees true
If you’re designing or reviewing such a system, here’s the short, non-mathematical
checklist:

• Freshness: derive each round’s rotation from a high-entropy per-session
seed mixed with trusted time. No repeats, no correlations.

• Separations: keep the private token→zone mapping in the user’s head/app
only. Never mirror that mapping in server logs, URLs, CSS classes, color
names, etc.

• Parameters: pick enough zones and rounds to keep the per-attempt
success probability tiny (e.g., six zones across six rounds already sends it
plummeting).

• Padding: if you want the cleanest theory, pad the alphabet so it divides
evenly into zones. (This is a nicety; it just removes a tiny, irrelevant
wrinkle.)

• Hygiene: avoid side channels, consistent UI timing, don’t encode zone
identity in audio frequencies or pixel artifacts an adversary could analyze.

• Throttling: rate-limit attempts and lock out rampant failure. It turns
“rare luck” into “practically impossible.”

Do these, and the two worries remain solved in practice because they’re
solved in principle.

Thought experiments that make the intuition stick

The dance-floor doorman
The bouncer lets you in only if you perform a five-step dance to tonight’s song.
You and the bouncer share a private legend (“on ‘UP’ I mean step 3,” etc.). The
DJ picks a new song, and with it, a new beat, every minute. Someone can film
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you dancing, but tomorrow’s song has a different beat. A replay is off-beat and
rejected. Without your private legend, an outsider can’t tell which call (“UP!”)
matched which step.

The museum that rehung overnight
You point to the room that contains the next painting in your personal list.
Overnight, the curator reshuffles the entire gallery by a rule only they know. The
next day, pointing to yesterday’s room number doesn’t find the right painting.
Filming your path yesterday doesn’t grant access today.

The label-less buttons
Six buttons emit six sounds. You and the verifier agree privately which sound
means which number. Outsiders can record sounds forever; without your private
legend, those sounds are interchangeable. Tomorrow the machine rewires which
paintings are behind which numbered doors, but the sounds don’t change, and
outsiders still don’t know which sound stands for which number.

Each story carries the same moral: fresh geometry + private legend ⇒
recordings and guesses don’t help.

The four “objections” addressed
When someone says, “If I watch enough, I’ll learn it,” or “If I guess enough, I’ll
get it,” we point them to these four layers of impossibility:

1. Not mathematically. The observable data (layouts, tokens, pass/fail)
are generated by a process whose distribution does not depend on the
secret. If the distribution is the same for all secrets, mathematics says
there is nothing to infer.

2. Not statistically. Frequencies, correlations, and cross-round patterns are
intentionally flattened by independent rotations and masked by a private
legend. Longer observation only tightens the flatness.

3. Not computationally. The combined guessing space (secrets × maps
× cryptographic states) grows explosively; the per-attempt success odds
are tiny; and the system rate-limits tries. No realistic computer farm can
churn through it.

4. Not physically. Even absurdly optimistic computations would demand
energy and time far beyond what a planet or a civilization can supply.
Heat, power, and lifetime limits stop the fantasy cold.
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Closing: The right mental model
This style of authentication is not a new kind of password; it’s a new kind
of proof. It asks: Can you navigate today’s rotating map using your private
legend, round after round, without slipping? Because the map rotates anew and
the legend never leaks, a bystander cannot infer the legend by watching, and a
brute-forcer cannot stumble into the right path before the universe sends them
the electricity bill.

So when a naive (but reasonable!) person says, “Surely, if I watch enough,
I’ll get it,” the kindest answer is:

You can watch a million dances, but the song keeps changing and
the steps are called in a language you don’t know. And even if you
try to fake it, the bouncer keeps changing the music, and you only
get a few shots before they stop the show.

That’s why both objections, neither learning by observation and winning by
guessing, are defeated here. Not by obscurity, not by wishful thinking, but by
construction.

Why Naive Intuition About Attacks on ENI6MA
are Wrong.
In most systems, a secret (a password, seed phrase, or private key) is something
you show, even if indirectly, so a camera or keylogger can copy it. If you cap-
ture enough keystrokes or screenshots, you’ll piece together the secret. That
intuition is false here because this protocol never exports the secret itself. In-
stead, it choreographs a short interaction that proves the user knows the secret
without revealing it. And critically, every session takes place in a newly
randomized geometry, the “stage” changes each time, so an old performance
cannot be replayed.

This is the central theme: your knowledge is manifested as a path
through a changing landscape, not as a reusable string. A video of
yesterday’s path in yesterday’s landscape doesn’t translate to today.

To make that precise, we need a modest amount of notation and a few simple
facts.

The setting (gentle formalism)
We’ll focus on a single alphabet for clarity (think: the 26 letters), though nothing
essential changes with multiple alphabets.

• Let the alphabet size be N arranged once and for all on a ring in a fixed
cyclic order. We label letters by indices i ∈ {0, 1, . . . , N − 1}.
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• A login consists of L rounds. In round r, the verifier chooses an inde-
pendent rotation (a cyclic shift) θr ∈ {0, . . . , N − 1}. Intuitively, θr is
determined by fresh entropy and trusted time; for our analysis we model
it as an independent uniform random variable.

• After applying the rotation θr, the ring is partitioned into C zones of
(as equal as possible) size about N/C. Think of painting the ring into C
contiguous colored slices.

• The prover holds a secret sequence of letters S = (i1, . . . , iL) (for ex-
ample, “NOODLE”).

• The prover also holds a private map of witnesses, a fixed secret bijec-
tion

M̂ : {0, 1, . . . , C − 1} −→ W,

from zone indices to a public set of witness tokens W (e.g., {UP,DOWN,LEFT, . . . }).
Observers can hear or see tokens in W , but do not know which token cor-
responds to which zone.

• Define the zone index of letter i under rotation θ by the function

q(i, θ) ∈ {0, . . . , C − 1},

which returns the contiguous slice (zone) containing (i + θ) mod N . A
concrete formula, assuming equal-sized zones when C | N , is

q(i, θ) =

⌊
(i+ θ) mod N

N/C

⌋
.

(If C ∤ N , zones differ by at most one element; we handle that small detail
later.)

What does a passive attacker observe? In every round r they can record
the visible layout (which letters landed in which colored zone that round) and
the emitted witness token wr = M̂

(
q(ir, θr)

)
. They also see the final pass/fail.

They do not know M̂ , and they cannot predict θr for future rounds.
The folklore claim we will dismantle is:

Folk Claim. “If an attacker records enough sessions (the layouts
and the witnesses), they will eventually recover the secret sequence
S and the private map M̂ .”

We will prove that the claim is mathematically false under the axioms of
the protocol, and then we will explain why even desperate brute-force strategies
are crushed by physical limits (capacity, energy, time).
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Four axioms (the backbone)
To keep the argument clean, we isolate the assumptions that ENI6MA depends
on. All are operational design choices that can be implemented and audited.

Axiom 1 (Independent, uniform rotations). For each round r, θr is
independent of θs for s ̸= r and uniformly distributed over {0, . . . , N − 1}.

Axiom 2 (Contiguous, near-equal zones). Each rotation θr induces a
partition of the ring into C contiguous zones of sizes either ⌊N/C⌋ or ⌈N/C⌉.

Axiom 3 (Private bijection of witnesses). The witness map M̂ is a
fixed, per-prover bijection from zone indices {0, . . . , C−1} to the public witness
set W . It never leaves the prover’s control and is unknown to observers.

Axiom 4 (Layout independent of the secret). The random choice of θr
is statistically independent of the secret letters ir. (Operationally: the verifier’s
randomness and time source does not depend on which letter the prover will
check next.)

These are mild and realistic; they are exactly what the interface does.

Three lemmas (the engine room)
We build three lemmas that, chained together, destroy the folk claim.

Lemma 1 (Uniformity Through Ring Rotation).
Fix any letter i. If θ is uniform on {0, . . . , N − 1}, then the random zone index
q(i, θ) is uniform on {0, . . . , C − 1} when C | N ; when C ∤ N , it is “near-
uniform,” and the per-zone probability deviates from 1/C by at most 1/N .

Idea of proof. The map θ 7→ (i + θ) mod N is a bijection on {0, . . . , N −
1}, so (i + θ) mod N is uniform on ring positions. Partition the ring into C
consecutive blocks (zones). If each block has size N/C (exact divisibility), the
chance to land in any particular block is exactly 1/C. If not, r blocks have size
⌊N/C⌋+1 and C − r have ⌊N/C⌋, so the gap between the largest and smallest
zone probability is ≤ 1/N .

Plain reading. A rotation is a rigid, global shift. As θ varies, every letter
visits every zone equally often (exactly or within a tiny slack). A single “tick”
of the dial moves all letters, so there’s no way for one letter’s zone frequency to
stand out.

Lemma 2 (Independence across rounds and ses-
sions).
If {θr} are independent (Axiom 1), then for any fixed secret letter i, the sequence
q(i, θ1), q(i, θ2), . . . is i.i.d. (independent and identically distributed) with the
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uniform (or near-uniform) law from Lemma 1. Consequently, over multiple
sessions, the entire multiset of zone indices produced by a fixed i remains i.i.d.
with that same law.

Plain reading. Each round scrambles the ring afresh. There’s no “momen-
tum” from one round to the next, so frequency and correlation attacks cannot
accumulate signal.

Lemma 3 (Masking by the private bijection).

Let Z be any random variable on {0, . . . , C−1}. If M̂ is a bijection {0, . . . , C−
1} → W unknown to the observer and W ⋆ = M̂(Z), then W ⋆ and Z carry the
same entropy but different labels; to an observer without M̂ , the distribution of
W ⋆ is indistinguishable from any permutation of Z’s distribution.

In particular, if Z is uniform on {0, . . . , C − 1}, then W ⋆ is uniform on W .
An observer who hears W ⋆ cannot tell which zone index produced it.

Plain reading. The private witness map M̂ is a perfect “label scrambler.”
It turns a uniform (or near-uniform) signal over zone indices into the same
uniform (or near-uniform) signal over tokens, but with labels that outsiders
can’t interpret.

The main theorem (no information to learn)
Armed with those lemmas, we now formalize the headline claim.

Theorem (Zero mutual information for passive observation).
Fix the secret sequence S = (i1, . . . , iL). Under Axioms 1–4, the en-
tire passive transcript

T =
(
(layout1, w1), . . . , (layoutL, wL)

)
has zero mutual information with S: I(S;T ) = 0 when C | N
and I(S;T ) ≤ O(L/N) in the non-divisible case (a tiny, removable
slack).

Equivalently: even infinitely many transcripts do not make S more
predictable to an observer.

Sketch of proof. By Axiom 4, layouts are generated independently of S
(they depend only on θr). Condition on the realized layout in round r. For any
fixed letter ir, the zone index q(ir, θr) is a deterministic function of the layout
(it’s simply “which zone contains that letter, given what we see on the screen”).
However, by Axiom 1 and Lemma 1, marginalizing over the randomness
that produced the layout, the distribution of q(ir, θr) is uniform (or near-
uniform) and does not depend on ir. Applying Lemma 3, the observed token
wr = M̂(q(ir, θr)) is uniform (or near-uniform) over W , again independent of
ir. By independence across rounds (Lemma 2), the joint law of (w1, . . . , wL)
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is i.i.d. uniform (or near-uniform) for any S. Since the layouts themselves are
independent of S, the pair (layouts, tokens) has a distribution that does not
vary with S. Therefore I(S;T ) = 0 (or ≤ O(L/N) which vanishes with light
padding to make C | N).

Translation. Even if you watch forever, the statistics of what you can see
are the same for every possible secret. There is literally no signal in the
transcript that points to the secret. No amount of data turns “no signal” into
“some signal.”

This already refutes the folk claim in a strict information-theoretic sense.
But we can also attack the claim from two more angles: identifiability and
sample complexity.

A symmetry (identifiability) obstruction
There is a subtle, beautiful group-theoretic effect at play: gauge freedom in
the labeling of zones and tokens.

• The private map M̂ lives in the symmetric group SC (all C! permutations
of C items).

• For any hypothesized secret S and any transcript of tokens (w1, . . . , wL),
there exists some bijection M̂ that makes those tokens match the zones
that would be correct for S in hindsight.

• To an outside observer, the pair (S, M̂) is identifiable only up to this joint
relabeling; the same token transcript can be explained by many
different (S, M̂) pairs.

This is an identifiability obstruction: even with unlimited transcripts,
an attacker cannot settle on a unique pair (S, M̂). The best they can do is
produce a cloud of equally plausible explanations, all related by permutations.
In statistics language, the model is unidentifiable from passive data.

This obstruction is not fragile, it’s structural. As long as the observer lacks
a “ground truth” anchor that ties a specific token to a specific zone, the sym-
metric group acts transitively on the explanations. The only way to break that
symmetry is to obtain side information about the private map M̂ (which the
protocol deliberately never exports).

Why classic attacks collapse
With the theorem and the symmetry in hand, the usual bag of tricks has nothing
to grip:

1. Frequency analysis.
For a fixed letter i, the zone index q(i, θ) is uniform over {0, . . . , C − 1}.
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After masking by M̂ , the token w = M̂(q) is uniform over W . There-
fore, the frequency of tokens reveals no letter preferences. There is no “E
appears a lot” signature to exploit.

2. Correlation (bigram/trigram) attacks.
The pair

(
q(ir, θr), q(ir+1, θr+1)

)
is a product of independent uniforms, so

bigrams over tokens are also independent uniforms after masking. There
is no “TH often follows T” footprint because each round’s geometry is
independent.

3. Layout-token cross-correlation.
One might attempt to correlate the observed layout with the observed
token: “When ‘A’ is in the red zone, does the user say UP more often?”
But the token label “UP” is unrelated to “red” without knowing M̂ ; and
even if you guess a mapping for one session, the next round’s rotation
moves every letter in lockstep, wiping your guess out statistically. (In
exact terms: w is independent of i even when conditioning on the layout,
the critical conditional-independence step inside the main theorem.)

4. Repeated letters (e.g., the ’OO’ in NOODLE).
Two appearances of the same letter occur under independent rotations;
their zones are independent draws, so they do not exhibit a detectable
“repetition pattern.” The only structure is the verifier’s membership check,
which is not visible to the observer beyond the final pass/fail.

This is the core of the design: every round is a fresh coin flip as far as
the attacker is concerned.

Sample complexity: even the “slack” is unreach-
able
What about the small technicality when C does not divide N? Then some zones
are longer by one element. Does that whisper any information?

Let pz be the probability that a fixed letter i lands in zone z. From Lemma
1, ∣∣∣∣pz − 1

C

∣∣∣∣ ≤ 1

N
,

∑
z

pz = 1.

A classical result in statistics says that to distinguish a perfectly uniform
distribution from one with bias at most ε in total variation distance with con-
fidence 1− δ, you need on the order of

Ω

(
1

ε2
log

1

δ

)
independent samples. Here ε ≲ 1/N , so the sample complexity is Ω

(
N2 log(1/δ)

)
.
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• For N = 26 and δ = 10−6, this is on the order of tens of thousands of
independent observations per letter, which you do not get in an authen-
tication transcript.

• But in our setting, the observer never even sees the zone index, they see
the token w = M̂(q). Since M̂ is unknown, the bias is a bias on unlabeled
categories; in effect, the labels can be permuted arbitrarily. That makes
the statistical test even weaker: you do not know which category to test
for a small surplus.

In short, even the vanishingly small slack is not practically learnable in this
interaction model. And if one is still nervous, the implementation can trivially
pad the alphabet (add dummies) so that N is a multiple of C, eliminating the
slack exactly.

High-dimensionality: why “watch more” does not
help
It’s easy to mistake volume of data for information. What you record each
session is high-dimensional: a whole colored layout (many pixels) and a witness
token. Surely patterns must lurk in such a big space?

Here is the trick: the layout carries entropy that is independent of
the secret (Axiom 4). The per-session “movie” is drawn from a large distribu-
tion over ring rotations and zone partitions, but that distribution is the same
regardless of the secret. In information-theory terms, the layouts are pure
noise with respect to the secret variable S. The only “signal” that touches the
secret is the membership event “the secret letter lies in the named zone,” but the
only part of that event you’re allowed to see is the token w, which (by Lemmas
1–3) is i.i.d. uniform and thus also pure noise with respect to S.

The result is a high-dimensional noise shell around the secret: the more
sessions you collect, the more independent noise you accumulate, without ever
increasing the mutual information with S. This is not a hand-wavy metaphor;
it is what I(S;T ) = 0 means.

Practical limits (capacity, energy, time): the sledge-
hammer
Suppose someone ignores the theory and tries a blunt approach:

“I’ll just brute-force everything : enumerate secrets S, enumerate wit-
ness maps M̂ , check which pairs remain compatible with all my
recordings, and pick the survivors.”

Even abstracting away the fact that every pair (S, M̂) has the same tran-
script likelihood (so you end with a massive set of survivors anyway), this pro-
gram falls off a cliff when you look at sizes.

19



• If the secret has length L over an alphabet of size N , then there are NL

candidate secrets.

• There are C! possible private maps M̂ .

• So the naive hypothesis space is NL ·C!. For typical human-usable param-
eters, say N = 26, L = 8, C = 6, that’s 268 · 720 ≈ 2.08× 1012 hypotheses
(trillions). And the search delivers no unique “winner” because of the
identifiability obstruction: many (S, M̂) pairs remain equally plausible.

But modern attackers have GPUs! A trillion is no longer unthinkable! So let
us escalate to the protocol’s second line of defense: cryptographic hardness
bound by a large entropy parameter λ (e.g., 256 or 512 bits) in the layout
generation (the seed that drives the rotations). Even if the adversary tries to
predict or invert the layouts to fake a future run, they face guessing a λ-bit
value. The probability of success per try is 2−λ; for λ = 256, that’s about
10−77.

At this point, physics steps in:

• A state-of-the-art exascale machine executes about 1018 operations per
second. Run it for 30 years (≈ 109 seconds), that’s 1027 operations.

• Searching a λ = 256 space requires on average 2255 ≈ 5.8× 1076 trials, 49
orders of magnitude more than you have.

• Even if you had 109 such machines (a billion exascale computers) running
for 30 years, you would still be short by 40+ orders of magnitude.

And then there’s energy. Landauer’s principle says that erasing one bit
dissipates at least kT ln 2 joules of heat (where k is Boltzmann’s constant and
T is temperature). Every realistic computer irreversibly erases many bits per
operation, so combing through 2256 candidates would demand energy far be-
yond the total energy humanity can produce in a geological epoch. Whatever
the precise constant factors, the conclusion is invariant: your star dies before
your search ends.

In short: even if the math left a crack (it does not), the universe would shut
the door.

The “replay” angle: why yesterday’s success is in-
ert
A cousin of the folk claim is: “If I record a successful session, I can just replay
it.” Not here.

Let Zr = q(ir, θr) be the zone index in round r for yesterday’s session, and
let wr = M̂(Zr) be the emitted token. Today’s session uses fresh θ′r; the correct
zone index for the same letter is Z ′

r = q(ir, θ
′
r).
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Key fact: If θ′r ̸= θr, then with overwhelming probability Z ′
r ̸= Zr. So

replaying yesterday’s wr simply points to the wrong zone today. Over L rounds,
the chance that all rotations repeat perfectly (so a replay would pass) is (1/N)L

(or, if the layout generation is keyed by a large λ, bounded by 2−λ), numbers
so small they vanish. This is “anti-replay by construction”: changing the time-
indexed rotations changes the manifold, which invalidates old transcripts.

This is a crucial philosophical shift. Traditional systems glue replay pro-
tection on the outside (timestamps, rate limiting). Here, replay is impossible
inside the math.

A plain, “doorkeeper” intuition (without equations)
If the above felt heavy, here’s a concrete picture:

• Imagine a circular board with the alphabet on it. Each round, the door-
keeper spins the board by a secret amount and then paints C slices (zones)
on it. You know a word. To prove it, you name a color (zone) that cur-
rently contains your next letter.

• The eavesdropper hears what you say (a word like “UP”), and they can
see how the board looked that round. But they don’t know which color
the word “UP” refers to, because that mapping is private to you and the
doorkeeper.

• Even worse for the eavesdropper, next round the board is spun again. So
any guess they had about “UP ↔ red” is immediately scrambled. In fact,
across many rounds, your spoken words are indistinguishable from random
choices among the C zone names.

• Tomorrow, the board is spun differently again. Even if they play back
your recorded words, they will be pointing at yesterday’s zones, which no
longer match today’s positions of your letters.

The doorkeeper and performer always coordinate in the present tense. The
past is just a souvenir.

Addressing Naive Objection / Challenges
Objection 1: “Okay, but I’m not passive. I’ll set up a fake verifier and
trick the user into logging in through me. Then I control the layouts.”

That is a man-in-the-middle (MITM) attack. The protocol’s default defense
is that the verifier must check per-round acceptance against their own layouts.
A fake verifier can’t complete the proof with the real verifier without synchro-
nizing layouts (which are keyed by entropy and time on the real side). There
are also bilateral variants (“compiled twins”) where the user demands a witness
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from the verifier; a MITM then has to fake two parties’ private maps coherently,
far harder in practice.

Objection 2: “What if I try to reverse-engineer the private map
M̂ from many sessions?”

You cannot. The witness tokens are uniformly distributed across {1, . . . , C}
(after relabeling by M̂) and independent across rounds. There is no statistical
footprint to align a token to a specific zone. Any alignment you propose can be
defeated by a different session’s rotations. Formally, the space of explanations
is closed under the symmetric group on C labels. Unidentifiable.

Objection 3: “I’ll combine token frequencies with layout images
and use machine learning to detect subtle patterns humans missed.”

All roads still lead to the mutual-information theorem. A perfect classifier
cannot beat an information bound of zero. More data does not create informa-
tion ex nihilo. Without side channels (timing, audio leakage about the private
map, etc.), the input features are statistically independent of S. In ML terms:
your model will learn the layout generator, not the user’s secret.

Objection 4: “But if I really watch a lot, like millions of sessions,
surely the law of large numbers will reveal something.”

It will reveal that tokens are i.i.d. uniform, and that the layout generator
behaves as designed. It will not reveal S. That is exactly what the law of large
numbers says when the expectation is the same under every hypothesis.

The forging probability (and why it’s tiny on pur-
pose)
The only strategy left is to guess the right zone each round. If you have no
knowledge of the secret letter or the private map, your success per round is
1/C. Over L rounds:

Pr[pass] ≤ C−L + 2−λ.

For human-friendly numbers like C = 6, L = 6, the geometric term is
6−6 ≈ 1.6× 10−5. If the layout engine is keyed with λ = 256, the cryptographic
term is effectively zero. With basic throttling (a handful of attempts per hour),
guessing becomes a non-starter.

This bound is the protocol’s soundness guarantee: cheaters almost never
pass.
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Implementation hygiene (keeping the axioms true)
Everything above rests on Axioms 1–4. They are straightforward to uphold:

• Use a trusted time source and a cryptographically strong PRP/PRF to
derive θr from a per-session seed; this gives independence and uniformity.

• Choose C to divide N (or pad N) so zones are equal sized.

• Keep the witness bijection M̂ private and never reflect it in UI elements
an observer could map (e.g., avoid labeling tokens with colors that match
on-screen colors).

• Don’t leak timing or micro-structure that correlates with the private map
(constant-time UI responses, optional jitter).

These are all testable engineering practices, not leaps of faith.

A final, big-picture comparison
Traditional secrets are objects you can copy. This protocol turns a secret into
a capability you must exercise in the moment against a freshly randomized
world. That is why:

• Recording is harmless: you captured a performance in a world that no
longer exists.

• Statistics are helpless: the distributions you observe are equal (or negli-
gibly near-equal) for all secrets.

• Brute force is impossible: the parameter λ pushes the search beyond the
computational and energetic means of our universe.

• Replays fail by design: changing the time re-tilts the world.

If you only remember one sentence, let it be this:

No number of passive observations can reveal a variable
that the distribution does not depend on.

And in this scheme, the transcript distribution doesn’t depend on the secret.

Epilogue: the axioms, lemmas, and theorem in one
breath

• Axiom 1–4: Independent uniform rotations; contiguous near-equal zones;
private bijection of witnesses; layouts independent of the secret.

23



• Lemma 1 (Uniformization): For any letter, the zone index after a
random rotation is (near-)uniform over {0, . . . , C − 1}.

• Lemma 2 (Independence): Across rounds and sessions, zone indices
are i.i.d.

• Lemma 3 (Masking): Applying an unknown bijection to a uniform
variable preserves uniformity and destroys label meaning.

• Theorem (Zero mutual information): The complete passive tran-
script, layouts plus tokens, has the same distribution for every secret S.
So I(S;T ) = 0 (or arbitrarily close to zero with trivial padding), and no
amount of observation helps.

With that, the folk claim dissolves. Watching more does not unlock the se-
cret, not mathematically, not statistically, not computationally, and not physi-
cally.

Setup (notation)
• Fix an alphabet of size N laid out once and for all in a ring (a cycle) in a

fixed order. Label letters by indices i ∈ {0, 1, . . . , N − 1} around the ring.

• Each round r the verifier chooses a rotation (cyclic shift) θr ∈ {0, 1, . . . , N−
1}. Think of θr as derived from entropy+time and modeled as independent
uniform random variables across rounds.

• After rotating by θr, the ring is foliated into C contiguous zones of (as
equal as possible) size ≈ N/C. Formally, define the zone map

q(i, θ) =

⌊
(i+ θ) mod N

⌊N/C⌋ or ⌈N/C⌉

⌋
∈ {0, 1, . . . , C − 1}.

(When N is divisible by C, each zone has size exactly N/C, and the
denominator above is simply N/C.)

• The prover’s private map of witnesses is a secret bijection M̂ : {0, . . . , C−
1} → W from zone indices to a public set of witness tokens W (e.g., words
like “UP/LEFT/. . . ”, icons, etc.). Observers hear the token w = M̂(q) but
do not know M̂ .

The only things an attacker/observer can do are: record the visible ring
layout (which letters fell in which zone that round) and record the emitted
witness token w.
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Key lemma: rotations make zone membership uni-
form
Lemma 1 (Uniformization by rotation).
Fix any letter index i. If θ is uniformly random on {0, . . . , N − 1}, then q(i, θ)
is uniform on {0, . . . , C − 1} whenever N is divisible by C; when N is not
divisible by C, the distribution is near -uniform and the per-zone bias is at most
1/N .

Proof (sketch).
The map θ 7→ (i + θ) mod N is a bijection of {0, . . . , N − 1} to itself, so a
uniform θ makes (i + θ) mod N uniform on {0, . . . , N − 1}. Partition that set
into C consecutive blocks (the zones). If N is divisible by C, each block has size
exactly N/C, so the zone index is uniform with probability 1/C for each zone.
If N = qC + r with 0 < r < C, then r zones have size q+1 and C − r have size
q, so the largest probability is (q + 1)/N and the smallest is q/N , giving max
deviation ≤ 1/N .

Interpretation. A rotation is the same “increment” applied to every letter
index. That uniformly shifts the entire ring. As θ varies, each fixed letter falls
into each zone equally often (exactly, or up to a tiny 1/N slack). This is what
you were pointing at when you said: “a single change of the elements causes a
uniform change across all other characters.”

Consequences for attacks

1) Frequency attacks fail
A classic frequency attack tries to learn which plaintext letter is which by watch-
ing which symbol appears most often. Here, what the observer sees each round
is only the zone of the current secret letter (and even that is masked by M̂ ; see
below). For any fixed plaintext letter i, by Lemma 1,

Pr[q(i, θ) = z] =
1

C
(exact if C | N ; within 1/N otherwise)

for each z ∈ {0, . . . , C − 1}. Therefore, zone frequencies are identically
distributed for all letters. The most common plaintext letter (“E”, say) does
not make any zone (or any witness token) appear more often than it would for
a rare letter. Observed frequencies carry no information about the underlying
letter distribution.

If rounds use independent θr, then for a fixed letter i the sequence q(i, θ1), q(i, θ2), . . .
is i.i.d. uniform on {0, . . . , C − 1}. So even very long observation windows do
not give the attacker a statistical edge.
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2) Correlation (bigram) attacks fail
Suppose an attacker tries to exploit correlations like “T is often followed by H”.
In round r, the zone is q(ir, θr) for the r-th letter ir of the secret. Because
θr and θr+1 are independent, the pair (q(ir, θr), q(ir+1, θr+1)) has a product
distribution: each component is (near-)uniform and independent of the other.
Thus, the joint distribution over consecutive rounds is uniform on {0, . . . , C−1}2
(up to the same 1/N slack when C ∤ N). No bigram signature survives.

Even if someone hypothesizes the same letter repeats (e.g., double “O”),
the two appearances happen under independent rotations, so their zones are
independent draws; there is no “repeated-letter” footprint to correlate.

Why a ring (fixed order + random rotation) is
enough
You might ask whether we need a fresh random permutation of letters each
round. Surprisingly, no, for these leakage questions, using the cyclic subgroup
(rotations) already gives the same protection:

• The group of rotations {x 7→ x+θ mod N} acts transitively on positions:
any letter visits every position equally often as θ varies.

• Because zones are defined by contiguous blocks of positions, transitivity
implies the exact uniformity of zone membership (again, exact when
C | N , near-exact otherwise).

• Crucially, an increment θ 7→ θ + 1 moves every letter forward by one
position. That “rigid body” motion guarantees that any local change is
a global change, you cannot bias one letter’s zone without moving all
letters in lockstep. This “all-or-nothing” shift is what defeats attempts to
track or pin a particular letter by watching small drifts.

A fully random permutation is overkill here: it gives the same marginal law
for zone membership but is harder for humans to scan. The fixed-order ring
plus random rotation preserves human legibility while already achieving the
probability-theoretic uniformity that kills frequency/correlation attacks.

Private witness map M̂ finishes the job

Observers do not see the numeric zone z; they hear a witness token w = M̂(z),
where M̂ is a private bijection known only to the prover/verifier.

• If Z is uniform on {0, . . . , C − 1} and W = M̂(Z), then W is uniform on
W (basic property of bijections).
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• Because M̂ is unknown to observers, they cannot align “UP/LEFT/. . . ”
to specific colors/regions on the display. Even if they record many rounds,
they only accumulate uniform samples of W , indistinguishable from what
any secret would have produced.

Formally, conditioned on any plaintext letter i, W has the same distribu-
tion. Thus the mutual information I(i;W ) is 0 (exactly when C | N ; within
negligible Õ(1/N) otherwise), and likewise for tuples across rounds because of
independence of the θr.

Edge case: when N is not a multiple of C
As noted, when N = qC+r with 0 < r < C, some zones have one extra symbol.
Two points matter:

1. The maximum bias per zone is at most 1/N . For typical N (e.g., N = 26)
and small C (say C ≤ 8), this is tiny.

2. Rotations are independent each round and transcripts are short. Estimat-
ing a 1/N -level bias would need far more samples than any authentication
transcript provides, and the unknown M̂ still masks which physical zone
a token corresponds to.

If desired, implementations can pad alphabets (e.g., add dummies to make
N divisible by C) so Lemma 1 holds exactly.

Putting it together
• Uniformity: For any letter, its zone after a random rotation is uniform

on {0, . . . , C − 1}.

• Independence: Across rounds, zones are independent because rotations
are independent.

• Ring suffices: Rotations (the cyclic subgroup) already produce the needed
uniform/independent laws.

• Masking: The private bijection M̂ turns uniform zones into uniform
witness tokens, hiding which zone was meant.

• No signal to mine: Frequencies, bigrams, and cross-round correlations
of what observers can record are identical for all secrets.

Hence, recording the ring layouts and the witnesses gives an at-
tacker no statistical leverage: every letter is equally likely to induce every
witness, every round, and the private map M̂ severs any link between what’s
heard and what zone was actually named.
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Conclusion: Why ENI6MA Stays Secure, Not Math-
ematically, Not Statistically, Not Computation-
ally, and Not Physically
If this essay had to be distilled to a single line, it would be this: ENI6MA
changes the nature of a secret from a reusable object into a per-
session performance played on a stage that is rebuilt every round.
From that single design choice, the four “nots” follow, mathematical, statistical,
computational, and physical, and together they close off the ordinary paths an
attacker would take. This concluding section pulls the threads tight, showing
how the parts cohere, where the guarantees come from, what would be required
to break them, and why those requirements are out of reach in any world we
can actually build.

Not mathematically.
The mathematical claim is about dependence: does the distribution of what an
attacker can observe depend on the victim’s secret? In ENI6MA, the answer is
no. Each round begins with a fresh, independent rotation of a fixed-order ring
and a foliation into zones. For any letter, the chance to land in any zone is equal
(or negligibly close to equal when the alphabet doesn’t divide perfectly), and
across rounds those placements are independent. The witness the user emits
is a relabeling of that zone via a private bijection that never leaves the user.
The result is that the observable transcript, layouts, tokens, pass/fail, has the
same distribution for every possible secret. In information-theory language, the
mutual information between the secret and the transcript is zero (or arbitrarily
close to zero with trivial padding). When the output of a channel does not
depend on its input, no theorem, no algorithm, and no devilishly clever trick can
recover that input. The premise of inference is missing. Thus, mathematics
rules out recovery by observation.

Not statistically.
Where mathematics states “there is no signal,” statistics asks, “could a signal
emerge with enough samples?” Here, too, the answer is no. Frequency analysis
fails because rotations spread every letter evenly across zones, flattening counts.
Correlation attacks fail because each round’s geometry is fresh and independent,
breaking bigram or higher-order structure. Cross-modal attacks that try to align
tokens to visual zones fail because the private token→zone map never appears
in the observable world, and any tentative alignment is scrambled by the next
rotation. Even the tiny edge case, zones differ by at most one element when
the alphabet doesn’t split cleanly, produces biases so small, and on unlabeled
categories, that they are unmeasurable within any reasonable number of login
rounds; and they can be eliminated entirely by padding the alphabet. Machine
learning does not change the story: models cannot learn a dependency that is
absent. With more data, you estimate the same flat distribution more precisely,
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you do not conjure structure where none exists. Thus, statistics cannot man-
ufacture evidence out of independent, uniformly distributed noise.

Not computationally.
If you cannot learn the secret by watching, perhaps you can guess it. ENI6MA
is structured so that the guessing game is hostile from the first moment. The
search space for secrets grows exponentially with length; the space of private
maps is factorial in the number of zones. Their product explodes quickly, even
for friendly human-scale parameters. Meanwhile, the per-attempt success prob-
ability is engineered to be tiny: if there are C zones and L rounds, blind success
is about (1/C)L. Rate limits (and lockouts) turn that tiny probability into a
practical impossibility. And if an attacker hopes to get around geometry by
predicting or inverting the layout engine, they run into cryptographic hardness:
the rotations derive from a seed with hundreds of bits of entropy. No practical
enumeration of secrets, maps, and seeds exists; no clever pruning makes the
combinatorics benign; and no shortcut appears because the protocol exports no
hooks to grab onto. Even wildly optimistic hardware projections fall orders of
magnitude short of the work needed. In short, computation cannot bridge
the chasm between the available resources and the required search.

Not physically.
Computation rides on energy and time. Even if one ignores engineering overhead
and imagines perfect parallelization, exploring cryptographic-scale spaces de-
mands numbers of operations so vast that the minimum heat they would dump
(by fundamental thermodynamic limits) becomes planetary, and the minimum
time to perform them surpasses plausible lifetimes of data centers, organiza-
tions, or individuals. Adding more machines only brings forward the energy
wall and heat dissipation crisis. Quantum speedups (e.g., Grover’s algorithm)
do not rescue the attacker; a quadratic improvement against an exponential
target still leaves an exponential that is far beyond reach when parameters are
chosen sensibly. Thus, physics itself vetoes the fantasy that raw force
can make up for absent information.

The four locks reinforce one another.
These are not four independent lines of defense that might fail one at a time;
they are one structure seen from four angles. The math of independence and
uniformity generates the statistical flatness; that flatness leaves nothing for com-
putation to grind; and the gulf between required and available computation is
widened by physical law. Pull on any thread and you feel the whole fabric.

Replay and “record-to-reuse” are dead on arrival.
Because each session’s geometry is keyed to new randomness and time, yester-
day’s valid path is incompatible with today’s stage. A pristine recording of a
successful proof does not reassemble the secret; it does not even produce a se-
quence that would be accepted again. It is a fossil, evidence that a performance
happened once, inert thereafter. This is a categorical difference from passwords
and static credentials, where a captured secret remains a secret.
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What about active meddling?
Man-in-the-middle games, relays, and phishing pages all depend on synchro-
nizing two worlds while lacking the private map and the verifier’s time-indexed
geometry. They cannot maintain round-by-round consistency. Variants with
mutual witnesses make the imposter’s task strictly harder, forcing them to coun-
terfeit both sides’ private legends coherently. In practice, the same ingredients,
fresh randomness, hidden legend, verifier-side checking, break the symmetry
that active attackers try to exploit.

Assumptions and hygiene, keeping the axioms true.
Every real system rests on choices. ENI6MA’s guarantees assume four that are
simple and auditable: per-round rotations are fresh and independent; zones are
contiguous and near-equal (or exactly equal with padding); the token→zone
map remains private; and the layout engine is independent of the secret. Im-
plementation hygiene (constant-time UI, no accidental leakage of the legend via
colors or CSS or audio cues, rate limiting, solid randomness and trusted time)
preserves those axioms. These are not fragile, esoteric requirements; they are
ordinary engineering practices aligned with the protocol’s intent.

Security without custodial risk.
A powerful but sometimes overlooked consequence is who holds what. The veri-
fier keeps receipts and non-secret parameters, not reusable credentials; the user
keeps the private legend. Auditors can verify that each round’s witness really
matched the laid-out zone for the committed letter without learning the secret
or the legend. That yields transparency without creating treasure troves for
attackers.

The right mental model to carry forward.
If you think of authentication as possession, “show me the string I can copy”,
ENI6MA will feel alien. The better model is performance: can you stay in step
with tonight’s rhythm using your private choreography, while the floor keeps
rotating? A spectator can watch, cheer, and film, but the film won’t help them
dance tomorrow. A stubborn onlooker can try to improvise the routine, but the
tempo and arrangement will change again, and the door staff will give them only
a few shots before the band moves on. The shift from possession to performance
is what makes “watching more” and “guessing more” both sterile strategies.

Closing claim.
So when we say ENI6MA “cannot be hacked,” we are not invoking bravado. We
are describing a protocol whose observable outputs do not depend on the secret ;
whose statistics stay flat no matter how long you watch; whose guessing game
is deliberately stacked so that luck is both mathematically rare and operationally
throttled ; and whose computational requirements to brute-force the unseen inter-
nals outstrip the energy and time available in any realistic universe. Under those
conditions, and with the straightforward operational hygiene that keeps them
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in place, the everyday routes to compromise are closed. Not mathematically,
not statistically, not computationally, and not physically.

Appendix: Equations
E1. Zone index (general form).
q(i, θ) =

⌊
(i+θ) mod N

⌊N/C⌋ or ⌈N/C⌉

⌋
∈ {0, . . . , C − 1}.

Maps letter i on the fixed ring, after rotation θ, to its zone (slice) index.
E2. Zone index (equal-sized slices case).

q(i, θ) =
⌊
(i+θ) mod N

N/C

⌋
.

Same as E1 when C | N ; all slices have size N/C.
E3. Private witness map (bijection).

M̂ : {0, . . . , C − 1} → W .
A secret, per-user relabeling from zone indices to public witness tokens (e.g.,
“UP/LEFT/. . . ”).

E4. Observed token each round.
wr = M̂

(
q(ir, θr)

)
.

What outsiders hear/see each round: the user’s token for the zone containing
the current secret symbol.

E5. Per-letter zone uniformity (frequency flatness).
Pr[q(i, θ) = z] = 1

C (exact if C | N , within 1/N otherwise).
Every letter lands in every zone equally often across random rotations (near-
exact if not divisible).

E6. Transcript object.
T =

(
(layout1, w1), . . . , (layoutL, wL)

)
.

Everything a passive observer can record over L rounds: each round’s layout
plus the emitted token.

E7. Zero-information claim.
I(S;T ) = 0 (exact if C | N ; otherwise I(S;T ) ≤ O(L/N)).
The transcript distribution does not depend on the secret S; observation yields
no information.

E8. Independence across rounds (iid statement).
{q(i, θ1), q(i, θ2), . . . } is i.i.d. uniform on {0, . . . , C−1} when θr are independent.
Fresh rotations make zone membership independent from round to round.

E9. Forgery probability (soundness bound).
Pr[pass] ≤ C−L + 2−λ.
Blind-guess success across L rounds with C zones plus negligible chance to guess
the entropy/seed.

E10. (From the formalism) Acceptance and membership.
M(sr,W

r
zr ) = 1{sr∈W r

zr
}, Λ =

∧L
r=1 M(sr,W

r
zr ).

Each round checks membership of the current secret symbol in the named zone;
accept iff all rounds pass.

31



E11. (From the formalism) Entropy–time–offset pipeline.
κr,j =

(
(τ mod U) + rM + j

)
mod U, Θ

(r)
αj = blockr,j mod |Aj |.

Deterministically mixes high-entropy seed E and time τ into per-round ring
rotation offsets.

E12. (From the formalism) Zone witness construction.

W r
z = ◦Ma=1α

r
a,z, M(sr, Xr) =

{
1 sr ∈ Xr

0 else
.

Concatenates the z-th slices across rings to define the zone set used in the mem-
bership test.

E13. (From the formalism) PoK theorem summary, including
soundness.
Pr[forge] ≤ C−L + 2−λ with completeness and passive ZK.
Formal statement of completeness/soundness/zero-knowledge for ENI6MA’s in-
teraction.

Appendix: Symbol map
• N — Alphabet size (letters arranged on a fixed-order ring).

• C — Number of zones (slices) the ring is partitioned into each round.

• i — Index of a particular letter on the ring.

• θ, θr — Rotation (cyclic shift) applied to the ring; θr is the independent
per-round rotation.

• q(i, θ) — Zone index in {0, . . . , C − 1} of letter i after rotation θ.

• z, zr — A specific zone index; zr is the user’s declared zone in round r.

• W — The public set of witness tokens (labels like “UP”, “LEFT”, etc.).

• M̂ — Private bijection mapping zone indices to witness tokens.

• wr — The token emitted in round r: wr = M̂(q(ir, θr)).

• L — Number of rounds in a login ceremony / proof.

• S = (i1, . . . , iL) — The secret sequence of letter indices (user’s commit-
ment).

• T — Full passive transcript ((layoutr, wr))
L
r=1.

• I(S;T ) — Mutual information between the secret and the transcript.

• M(·, ·) — Membership predicate: 1 if a symbol lies in the named zone’s
witness set, else 0.

• Λ — Conjunctive acceptance accumulator over rounds; accept iff Λ = 1.
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• λ — Entropy/security parameter (bits) protecting layout generation (e.g.,
256–512).

• Pr[pass] — Probability a forger is accepted in a blind attempt.

• E — High-entropy base integer (seed) used to derive rotations.

• τ — Time coefficient (high-resolution clock) mixed with entropy per ses-
sion.

• κr,j — Rosario Modulo Index selecting which entropy slice drives round
r, alphabet j.

• Θ
(r)
αj — Rotation offset for alphabet j in round r.

• Aj — j-th alphabet ring; |Aj | is its size.

• α r
a,z — The z-th slice of alphabet a after rotation in round r.

• W r
z — Zone witness set in round r (concatenated slices across alphabets).

Appendix: Axioms, lemmas, and proofs — one-
sentence summaries
Axiom 1 (Independent, uniform rotations).
Each round’s ring rotation θr is an independent, uniform cyclic shift, ensuring
no cross-round statistical footprint to mine.

Axiom 2 (Contiguous, near-equal zones).
After rotating, the ring is partitioned into C consecutive zones of (near-)equal
size so that zone membership is balanced.

Axiom 3 (Private bijection of witnesses).
The user’s secret map M̂ bijects zone indices to public tokens and is never
observable, so labels seen by outsiders are unanchored.

Axiom 4 (Layout independent of the secret).
The random layout (rotations/foliation) is generated independently of the user’s
secret letters, preventing leakage through correlations.

Lemma 1 (Uniformization by rotation).
For any fixed letter i, random rotation makes its zone q(i, θ) uniform over
{0, . . . , C − 1} (exact if C | N , within 1/N otherwise).

Lemma 2 (Independence across rounds).
With independent rotations, the sequence of zones a fixed letter occupies across
rounds is i.i.d., destroying frequency/correlation signals.

Lemma 3 (Masking by the private bijection).
Applying an unknown bijection M̂ to zone indices preserves uniformity and
strips label meaning, so observed tokens remain indistinguishable.
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Main Theorem (Zero mutual information for passive observation).
The complete passive transcript T (layouts + tokens) has the same distribution
for every secret S, so I(S;T ) = 0 (or O(L/N) if C ∤ N), i.e., watching more
never helps.

Soundness Bound (Forgery probability).
A blind attacker’s chance to pass is at most C−L + 2−λ, combining per-round
zone guessing with negligible entropy guessing.

(From the formalism) Proof-of-Knowledge Theorem.
ENI6MA is complete, sound with Pr[forge] ≤ C−L + 2−λ, and passive zero-
knowledge (transcripts simulatable without the secret/morphism).

(From the formalism) Anti-Replay Theorem.
Changing the time index τ necessarily changes at least one round’s rotation
offset, so old transcripts cannot validate in new sessions.
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