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Abstract
This document specifies an interactive, human-in-the-loop proof-of-knowledge
protocol that projects multiple Agent-committed alphabets into a rotating, fo-
liated manifold of hyperplanes. A Verifying Circuit derives per-ring spin states
(offsets) from a committed entropy integer and an optional time coefficient, ro-
tates the rings, and partitions them into n hyperplanes each round. The Agent
selects a zone via a private morphism from UI inputs to zone indices; the corre-
sponding multi-alphabet witness is captured and logged with auditable indices.

The protocol is fully configurable at commitment: the number of alphabets
M , their contents and sizes, the hyperplane count 4, and the secret length L
are agent-tunable. Secrets are strictly case-sensitive and n-ary: L may be any
positive integer derived from the Agent’s committed alphabets and application
needs. While examples use n = 6 and L = 6 for clarity, the PoK mechanics
apply to arbitrary n and L.

Entropy drives deterministic yet unpredictable per-round offsets via a Rosario
modulo index function. Optional time mixing injects microsecond-resolution
variability without sacrificing reproducibility given the same (, τ). The Verify-
ing Circuit alone computes offsets and foliations; the Agent operates only as a
projective interface and submission layer, preserving clean security separation.

Each round produces n witnesses (one per zone) as concatenations of selected
slices from the rotated alphabets. The Agent’s private morphism ϕ maps inputs
to zones, compounding adversarial uncertainty by n! morphism configurations.
The Verifying Circuit logs indices and offsets to enable deterministic replay and
external audit.

The acceptance rule is conjunctive across the secret’s symbols: with T ≥ L
rounds, every symbol si must be found in the corresponding witness Xi. This
is equivalent to an accumulator Λ formed from membership predicates, yielding
a clear PASS/FAIL outcome with no normalization and strict case sensitivity.

The framework generalizes across modalities (text, emoji, images, tones,
haptics) and scales security via alphabet sizes, number of alphabets, hyperplane
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count n, and entropy/time policies. It is designed for practical deployments
that require human-centric interaction, deterministic auditability, and strong
resistance to replay and forgery.
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0) Notation and Objects
Chapter Overview

This foundational section establishes the mathematical framework and sym-
bolic language that underlies the entire Rosario-Wang cryptographic architec-
ture. The notation and objects defined here serve as the building blocks for all
subsequent cryptographic operations, providing the formal mathematical foun-
dation necessary for rigorous security analysis and implementation. The section
introduces the concept of arbitrary enumerated alphabets that can span multiple
modalities, from traditional text-based character sets to more complex symbolic
representations including emoji, images, audio tones, and haptic feedback pat-
terns.

The importance of this section cannot be overstated, as it defines the fun-
damental objects that will be manipulated throughout the proof-of-knowledge
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protocol. By establishing a flexible alphabet system that supports arbitrary car-
dinalities and modalities, the architecture enables unprecedented adaptability
in cryptographic applications while maintaining mathematical rigor. The nota-
tion system provides a unified language for describing complex cryptographic
operations across diverse implementation contexts, from embedded systems to
cloud platforms.

The interoperation with the manifold cypher and proof system is direct and
essential: the alphabets defined here become the rings that are rotated, foliated,
and projected into hyperplanes during the manifold construction phase. The
case sensitivity requirements and concatenation operators establish the math-
ematical rules that govern how these alphabets interact and combine to form
witnesses. The zone enumeration system creates the spatial framework that
enables the hyperplane projection and witness selection mechanisms.

The sub-sections systematically build from basic alphabet definitions to com-
plex multi-modal configurations. Section 1.A introduces the core concept of ar-
bitrary enumerated alphabets and their tunability, establishing the foundation
for the entire system. Section 1.B defines the zone/color system that enables
spatial organization of the cryptographic space. Section 1.C establishes the
concatenation operator that combines alphabet slices into composite witnesses.
Finally, Section 1.D emphasizes the critical importance of case sensitivity in
maintaining cryptographic strength and preventing information leakage through
normalization.

0.A) Alphabets (Agent-tunable; arbitrary enumerated rings across
modalities)

• Arbitrary enumerated alphabets: the Agent may choose any separable,
cardinally symmetric enumerated sets (e.g., Latin letters, digits, emoji,
icons, images, audio tones, haptics/vibrations, magnetic or electronic pulses,
or other eigenvalues). Ring sizes are arbitrary and fixed by commitment;
optional balancing symbols (e.g., ♠♣) may be included by the Agent solely
to achieve desired cardinal symmetry. In large scripts (e.g., Han Chinese),
balancing symbols are typically unnecessary.

• Example (Latin default) — Upper: SU = "ABCDEFGHIJKLMN♠OPQRSTUVWXYZ♣"
(example size |SU | = 30). Actual uppercase ring content/size is Agent-
chosen and arbitrary.

• Example (Latin default) — Lower: SL = "abcdefghijklmn♠opqrstuvwxyz♣"
(example size |SL| = 30). Agents may choose distinct lower rings or omit
lowercase entirely.

• Example (Latin default) — Numeric: SN = "12345*67890#" (example
size |SN | = 12). Numeric rings, and any additional rings, can be larger or
smaller per commitment.
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0.B) Zones / Colors

Indices j ∈ {0, 1, 2, 3, 4, 5} map to agent-specified color enumerations

• The specific color mapping (e.g., 0→ BLUE, 1→ YELLOW, 2→ RED,
3 → WHITE, 4 → GREEN, 5 → BLACK) is determined by the authen-
ticating Agent during the commitment phase

• The six zones represent distinct color-coded regions in the agent projec-
tive interface, each corresponding to a specific slice index in the 6-way
foliation. This color mapping provides an intuitive visual representation
of the mathematical zones, allowing authenticating agents to make selec-
tions based on visual cues rather than abstract indices. The color scheme
is designed for high contrast and accessibility, ensuring that authenticating
agents can easily distinguish between different zones during the interactive
selection process.

Each zone index j serves as a mathematical identifier that determines
which slice of each alphabet (upper, lower, numeric) will be combined to
form the witness for that round. This mapping creates a direct corre-
spondence between agent projective interface elements and mathematical
operations, bridging the gap between human interaction and algorithmic
computation.

0.C) Concatenation Operator

Concatenation is denoted by ◦. The concatenation operator ◦ represents the
joining of character sequences end-to-end. This operation is fundamental to the
witness construction process, where slices from different alphabets are combined
to create composite witnesses. The concatenation preserves the order and con-
tent of each slice while creating a unified character set that represents the full
character space available in a particular zone.

0.D) Case Sensitivity

Witnesses, secrets, and verification are strictly case-sensitive; no normalization
(e.g., lowercasing) is applied. Case sensitivity increases the permutation space
and strengthens resistance to brute force.

• Entropy (configurable, integer 256–512 bits)
Let E ∈ N be a base entropy integer selected during the commitment
phase. Its size is arbitrary (commonly 256–512 bits). This integer drives
character ring rotation offsets via a Rosario modulo index function:

– Fractal reduction (Rosario modulo index): for each alphabet/ring α
with size |α|, an offset is obtained by reducing an entropy-derived
block modulo |α|; nested or repeated reductions can be used to in-
fluence multiple dimensions.
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– Time mixing (optional): a time coefficient τ (e.g., Unix-epoch mi-
croseconds) may be multiplied into entropy slices before reduction to
yield per-µs variation.

– Purpose: the resulting offsets Θα are applied as Möbius rotation
amounts during the manifold’s stochastic construction stage, prior
to foliation into hyperplanes.
See Section 3 for a comprehensive description and equations.

0.E) Symbols and Parameters (global)

• M: number of distinct alphabets/rings (Agent-tunable; M ≥ 1)

• α = {α1, . . . , αM}: ordered family of alphabets (rings); |αa| is the cardi-
nality of ring a

• n: number of hyperplanes/zones (Agent-tunable; n ≥ 2); zone index set
Z = {0, 1, . . . , n− 1} (0-based)

• L: secret length; secret string s = s1 · · · sL with case-sensitive symbols
from

⋃M
a=1 αa

• T: number of completed rounds in a transcript (must satisfy T ≥ L for
acceptance)

• E ∈ N: base entropy integer; |E| denotes bit length (commonly 256–512)

• τ ∈ N: optional microsecond time coefficient used for time mixing

• U: usable slice window size for human-auditable entropy slicing (default
U = 25)

• ei: base-10ˆ3 entropy slices of E ; ei ∈ {0, . . . , 999}

• ẽi: time-mixed slices, ẽi = (τ · ei) mod 103

• q, r: base slice length and remainder for n-way foliation, q = b|s|/nc,
r = |s| mod n

• `j : per-zone slice lengths, `j = q + 1{j < r}; prefix indices a0 = 0,
aj+1 = aj + `j

• qα: ring-specific base lengths for foliation, qα = b|α|/nc (used in logged
indices)

• kt
α: per-round, per-ring rotation seeds (when sampling with RNG), with
α ∈ {U,L,N, or general} and round t ∈ {1, . . . , T}

Indexing conventions: zone indices j are 0-based in {0, . . . , n − 1}; rounds
may be denoted by t ∈ {1, . . . , T} or r; both appear in later sections. String
positions are 0-based where used in rotation and slicing.
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0.F) Core Operators and Functions

• Möbius rotation ρk: for string s, ρk(s) = s[k : |s| − 1] ◦ s[0 : k − 1],
0 ≤ k < |s| ([E1])

• n-way foliation Πn: returns (s0, . . . , sn−1) with slice lengths `j and bound-
aries defined by (q, r, `j , aj) ([E2])

• Index progression κ: κ(s, n, k, j) = (k + j q) mod |s| records the origin
index of slice j ([E3])

• Rosario block selection κr,j : κr,j = ((τ mod U)+rM+j) mod U ; selected
block blockr,j = ẽ1+κr,j ([E8])

• Offset formation Θ
(r)
αj : Θ

(r)
αj = blockr,j mod |αj |; rotated ring (αj)

′ =
ρ

Θ
(r)
αj

(αj)

• Concatenation ◦: joins strings end-to-end (see §1.C)

• Indicator 1{·}: equals 1 if predicate holds, else 0

• Membership predicate M(p, x): true iff symbol p occurs in string/subset
x

• Zone morphisms:

– Default mapping m: concrete key-to-zone map (example in §6.B)
– Reversed mapping mr: alternate key-to-zone map (example in §6.B)
– General morphism φ : I → Z: private, bijective map from UI input

space I to zone set Z; m,mr are concrete instances

0.G) Derived Objects (per round)

• Rotated alphabets: Û t = ρktU (SU ), L̂t = ρktL(SL), N̂ t = ρktN (SN ) (or
generally for α ∈ α)

• Foliated slices: (U t0, . . . , U
t
n−1) = Πn(Û t), similarly for L and N

• Zone-j witness: W t
j = U tj ◦ Ltj ◦ N t

j ; in general, W t
j = ©M

a=1α
t
a,j ([E4],

[E9])

• Zone selection: with input key kt, zt = m(kt) if DIRECTION_SWITCH=false,
else zt = mr(kt); abstractly zt = φ(kt) ([E5])

• Captured witness and indices: Xt = W t
zt , It = (κ(SU , n, k

t
U , zt), κ(SL, n, k

t
L, zt), κ(SN , n, k

t
N , zt))

([E6])

• Logged indices (general n): I(gen)
t = ((ktU+qUzt) mod |SU |, (ktL+qLzt) mod

|SL|, (ktN + qNzt) mod |SN |) with qα = b|α|/nc

• Transcript element: Tt = (Xt, It); full transcript T = {T1, . . . , TT }
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0.H) Verification and Acceptance Constructs

• Acceptance condition ([E7]):

ACCEPT ⇐⇒ T ≥ L ∧
L∧
i=1

1{ si ∈ chars(Xi) } = 1

• Acceptance indicator: A(s,X1:T ) = 1{T ≥ L}
∏L
i=1 1{si ∈ Xi}

• Accumulator (Rosario–Wang) ([11.I]): Λ =
∧n
R=1 M(pi, x

R
i ); in the mini-

mal 1-to-1 model i = R, Λ =
∧L
i=1 M(si, Xi)

• Decision: return PASS iff A = 1 (equivalently Λ = 1), else FAIL

0.I) Mathematical and Implementation Conventions

• Case sensitivity is strict across alphabets, witnesses, secrets, and verifica-
tion; no normalization is permitted

• All modular arithmetic is taken over the natural range of the underlying
string/ring length, e.g., mod|s| or mod|α|

• Unless stated, zone indices j use 0-based enumeration; round counters
may appear as t or r and range from 1 to T

• Seeds ktα are generated independently per alphabet and per round; when
entropy/time is used, offsets are derived deterministically from (E , τ) via
κr,j and Θ

(r)
αj

• Logging captures both Xt and It for reproducibility and external audit;
optional integrity protection can sign It

• Complexity: verification runs in O(L) on the transcript (X1, . . . , XT ) with
simple membership checks

classDiagram
class Alphabet {
+name
+size |α|
+content

}
class Zone {
+index j
+color

}
class Secret {
+s : string
+L : length
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}
class Witness {
+X_t : string
+z_t : zone

}
class Transcript {
+T : list of (X_t, I_t)

}
Alphabet <.. Witness : "slices used"
Zone o-- Witness : "selects j"
Secret --> Transcript : "verified across rounds"
Transcript *-- Witness : "collects"

1) Commitment Phase
The Commitment Phase is the foundation of the Rosario-Wang cryptographic
architecture, where authenticating agents establish their cryptographic identity
and commit to parameters that govern all subsequent operations. This phase
creates the essential foundation for the proof-of-knowledge protocol and mani-
fold cypher system.

During the commitment phase, agents establish cryptographic components
including arbitrary enumerated alphabets as foundational rings, secret key ar-
rays derived from these alphabets, and private witness maps that establish bi-
jective relationships between enumerated alphabets. These components create
a multi-layered security framework.

The commitment process compiles these parameters into a secure binary
format. It begins with local substitution alphabets that maintain cardinal sym-
metry and bijective properties. The process then encrypts these commitments
into a binary executable, with options for encrypted sidecar files.

The resulting binary serves as the cryptographic engine that orchestrates
all operations. It protects embedded secrets while providing the computational
framework for the proof-of-knowledge protocol. The binary format ensures com-
mitments are embedded within machine code rather than stored as accessible
data structures.

Once compiled, commitments become permanently embedded within the
machine code, making reverse engineering virtually impossible. The secrets are
distributed throughout the executable’s instruction stream, integrated with the
machine code itself rather than stored as discrete data elements.

This architecture provides protection that traditional cryptographic key stor-
age cannot match. Even with binary access, the distributed nature of embedded
secrets makes reconstruction extremely difficult. It protects against both static
and dynamic analysis attacks.

The commitment phase establishes the foundation for the manifold cypher
system’s deterministic behavior. Committed parameters serve as mathematical
seeds that drive manifold construction, ensuring consistent and verifiable re-
sults while maintaining security properties. This deterministic behavior enables
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verification without access to original secret parameters.

graph LR
A["Agent"] --> P["Select parameters:<br/>M, n, L, ϕ, ||, τ_enabled"]
A --> S["Choose alphabets {α..α_M}"]
P --> C["Commitment tuple = (M,{α},n,L,ϕ,||,τ_enabled)"]
S --> C
C --> B["Compile/Embed into binary"]
B --> O["Binary Engine (with embedded commitments)"]
B --> SC["Optional Config Sidecar"]
O --> V["Verifying Circuit"]

1.A) Parameter Establishment

Before the interactive proof-of-knowledge protocol begins, the authenticating
Agent engages in a commitment phase where critical parameters are established:

Values collected during the commitment phase by the authenti-
cating agent:

• Alphabets that are used for the secret key array: The specific
character sets (e.g., SU , SL, SN ) that will be employed in the protocol

• The secret key array derived from these alphabets: The actual
secret string s = s1s2 · · · sL that the authenticating agent must prove
knowledge of. The secret length L is n-ary and agent-tunable (arbitrary
L ≥ 1) derived from the committed alphabets and application require-
ments; examples in this document may use L = 6 for clarity only.

• A private witness map, derived from enumerated alphabets that
are BIJECTIVE and cardinally symmetric: A mapping between
two cardinally symmetric enumerated alphabets for the projection and for
the witnesses

1.B) Color/Zone Enumeration Specification

The authenticating Agent specifies an arbitrary number of hyperplanes and a
mapping between enumerated alphabets. The number of colors (four or six:
blue, yellow, red, green, white, black) are simply agent-selected enumerations
specified during the commitment phase.

Example mapping specification:

• UP equals green

• Down equals yellow

• Forward equals black

• etc.
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This mapping creates a bijective relationship between agent projective inter-
face elements and mathematical zone indices, ensuring that each input action
corresponds to exactly one zone selection.

1.C) Roles: Authenticating Agent vs Verifying Circuit
• Authenticating Agent: selects and commits parameters (number of al-
phabets M, the enumerated alphabets themselves, hyperplane count n,
secret length L, UI glyph mappings/morphisms), presents the UI, cap-
tures authenticating agent key inputs, and submits witness declarations.
The Agent does not compute manifold ring offsets.

• Verifying Circuit: given the committed entropy (E) and optional time
coefficient (τ), constructs the manifold by slicing, time-mixing, selecting
blocks via κ, computing per-ring offsets Θ, rotating rings, and foliating
into hyperplanes. It logs indices and verifies witness membership. All
manifold ring offsets and hyperplane constructions are computed by the
Verifying Circuit, not the Agent.

• Security separation: this role split keeps sensitive offset construction and
replayable determinism within the Verifying Circuit while allowing the
Agent to remain an projective interface and submission layer only.

2) Entropy as Base Integer and Fractal Offset Application
(Rosario Modulo Index)
Chapter Overview

This section introduces the revolutionary entropy-driven approach that dis-
tinguishes the Rosario-Wang architecture from traditional cryptographic sys-
tems. The section establishes how large base entropy integers (256-512 bits)
serve as the foundational source of randomness for all cryptographic operations,
replacing traditional pseudo-random number generation with true entropy-driven
spin states. The fractal offset application through the Rosario modulo index
function creates a deterministic yet unpredictable mapping from entropy blocks
to ring-specific rotation offsets, enabling reproducible verification while main-
taining the security properties of random sampling.

The importance of this entropy-driven approach lies in its ability to pro-
vide true randomness that cannot be predicted or manipulated by any party,
while simultaneously enabling deterministic replay and verification. By using
cryptographically strong entropy sources as the foundation for deriving all ro-
tation offsets, the system achieves unprecedented security properties that scale
exponentially with entropy size. The time mixing component adds a temporal
dimension that makes the system resistant to replay attacks and ensures that
each interaction produces a unique manifold even with identical entropy values.

The interoperation with the manifold cypher and proof system is funda-
mental: the entropy-derived offsets function as per-ring spin states that fully
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determine the manifold construction at each round. These offsets drive the
Möbius rotation operations that randomize alphabet ordering, and the result-
ing rotated rings are then foliated into hyperplanes to create the cryptographic
space for witness generation. The entropy serves as the mathematical seed that
coordinates all subsequent cryptographic operations, ensuring consistency and
verifiability across the entire protocol.

The sub-sections systematically develop the entropy-driven architecture from
basic principles to sophisticated implementation details. Section 2.A establishes
the base entropy concept and its tunability across different security require-
ments. Section 2.B introduces the human-auditable slicing mechanism that
makes entropy operations transparent and verifiable. Section 2.C describes the
optional time mixing that adds temporal unpredictability. Section 2.D presents
the core Rosario modulo index function that deterministically selects entropy
blocks for each round and ring. Finally, Section 2.E explains how fractal reduc-
tion creates ring-specific offsets that drive the manifold construction process.

2.A) Base Entropy and Tunability

E ∈ N is an Agent-chosen integer (commonly 256–512 bits). The Agent also
selects the number of alphabetsM ≥ 1, their contents {α1, . . . , αM}, the number
of hyperplanes n ≥ 2, and the secret length L ≥ 1 during the commitment phase.
Defaults in this document use M = 3 and n = 6, but all are tunable.

2.B) Human-Auditable Slicing

Write E in base 103 as 3-digit slices ei ∈ {0, . . . , 999} and optionally reserve
the head slice for guards; let the usable window size be U (default U = 25) as
described in ENTROPY/THEORY.md.

2.C) Optional Time Mixing

Introduce a microsecond time coefficient τ and define time-mixed slices

ẽi = (τ · ei) mod 103,

keeping values within three digits while coupling manifold state to time.

2.D) Per-Round, Per-Ring Selection (Rosario Modulo Index)

For round r and ring coordinate j ∈ {0, . . . ,M − 1}, deterministically select a
slice index

κr,j = ((τ mod U) + rM + j) mod U, blockr,j = ẽ1+κr,j .

Other bijective enumerations of the usable window are permitted; the key prop-
erty is determinism given (E , τ, r, j).
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2.E) Fractal Reduction to Ring Offsets

For each selected alphabet αj with size |αj |, compute the offset and apply
Möbius rotation

Θ(r)
αj = blockr,j mod |αj |, (αj)

′ = ρ
Θ

(r)
αj

(αj).

When sub-rings or nested constructions are used, repeated ("fractal") reductions
of the same blockr,j against different moduli can derive families of offsets across
dimensions.

• Role in manifold construction: these Θ offsets are applied during the man-
ifold’s stochastic construction stage to each character ring prior to n-way
foliation into hyperplanes. With τ disabled the process is deterministic
per session; with τ enabled, offsets refresh at microsecond cadence.

• Determinism and tunability: fixing (E , τ) and the Agent’s commitments
(M, {α}, n, L) fully determines the per-round offsets and hence the emer-
gent hyperplanes, while preserving per-µs variability when time mixing
is enabled. See ENTROPY/THEORY.md §§1–7 for a deeper treatment
including routing and complexity bounds.

graph TD
E["Base entropy "] --> SL["Slice to base 10^3<br/>e_i {0..999}"]
SL --> TM["Optional time mixing τ:<br/>ė_i = (τ·e_i) mod 10^3"]
SL -->|no τ| KP["_{r,j} selection"]
TM --> KP["_{r,j} = ((τ mod U) + r·M + j) mod U"]
KP --> BL["block_{r,j} = ė_{1+_{r,j}}"]
BL --> TH["_{α_j}^{(r)} = block mod |α_j|"]
TH --> RO["Rotate ring _(α_j)"]

3) Entropy-Driven Offsets and Sampling (Rosario Modulo
Index)
Chapter Overview

This section provides a comprehensive treatment of the entropy-driven offset
generation and sampling mechanisms that form the mathematical core of the
Rosario-Wang cryptographic architecture. Building upon the foundational con-
cepts introduced in Section 2, this section delves deeper into the practical imple-
mentation details of how entropy is transformed into actionable cryptographic
parameters. The section establishes the complete mathematical framework for
entropy processing, from initial slicing and time mixing to the final generation of
per-round, per-ring rotation offsets that drive the manifold construction process.

The importance of this section lies in its detailed exposition of the entropy
processing pipeline that transforms raw entropy into the precise mathemati-
cal parameters needed for cryptographic operations. By providing a complete
mathematical description of the offset generation process, this section enables
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implementers to create robust, verifiable systems that maintain the security
properties of the original entropy while enabling efficient computation. The sec-
tion also establishes the mathematical relationships between different entropy
processing stages, ensuring consistency and correctness across the entire system.

The interoperation with the manifold cypher and proof system is operational:
the offsets generated through the entropy processing pipeline become the exact
rotation amounts applied to each alphabet ring during manifold construction.
These offsets determine the starting positions for the foliation process that cre-
ates hyperplanes, and they establish the mathematical relationships that enable
deterministic replay and verification. The entropy processing ensures that each
round produces a unique, unpredictable manifold while maintaining the math-
ematical consistency necessary for cryptographic verification.

The sub-sections provide a systematic progression through the complete en-
tropy processing pipeline. Section 3.A establishes the base entropy concept
and its range specifications for different security levels. Section 3.B describes
the default slicing mechanism that divides entropy into manageable blocks for
processing. Section 3.C introduces the optional time mixing that adds tempo-
ral unpredictability to the entropy processing. Section 3.D presents the core
Rosario modulo index function that deterministically selects entropy blocks for
each round and ring combination. Section 3.E explains the offset formation
process through fractal reduction that creates ring-specific rotation amounts.
Finally, Section 3.F discusses the configurability aspects that allow the system
to adapt to different deployment scenarios.

3.A) Base Entropy and Range

E ∈ N (agent-chosen, e.g., 256–512 bits). Renderable to decimal for human-
auditable slicing (e.g., 78–155 digits), but any fixed radix can be used.

3.B) Slicing (Default)

Write E in base 103 as 3-digit slices ei ∈ {0, . . . , 999}; optionally reserve a leading
slice for guards/headers; usable window size is application-defined (default 25).

3.C) Time Mixing (Optional)

ẽi = (τ · ei) mod 103 to maintain three digits while coupling to time.

3.D) Per-Round, Per-Ring Selection (Rosario Modulo Index)

For round r and ring index j among M alphabets,

κr,j = ((τ mod U) + rM + j) mod U, blockr,j = ẽ1+κr,j ,

where U is the usable slice count. Other bijective sampling schemes over the
slice window are permitted; the essential property is deterministic selection per
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(E , τ, r, j).
#### 3.E) Offset Formation (Fractal Reduction)

For each selected alphabet αj with size |αj |, define

Θ(r)
αj = blockr,j mod |αj |,

and rotate the ring by this Möbius amount: (αj)
′ = ρ

Θ
(r)
αj

(αj). Nested reduc-
tions can be applied to derive families of offsets when multiple rings or sub-rings
are present.
#### 3.F) Configurability

The number of alphabets M , their contents {α1, . . . , αM}, the hyperplane
count n, and the secret length L are agent-tunable during the commitment
phase. Defaults in this document use M = 3 (uppercase/lowercase/numeric)
and n = 6.

This section summarizes how E (and optionally τ) deterministically induces
rotation offsets feeding the manifold projection. See ENTROPY/THEORY.md
§§2–7 for the full theoretical framework. Offsets function as per-ring spin states;
the Verifying Circuit, armed with (E , τ), deterministically regenerates and, when
needed, inverts them to evaluate witness membership.

sequenceDiagram
autonumber
participant E as "Entropy/Time"
participant S as "Sampler "
participant R as "Ring α_j"
loop "For each round r and ring j"
E->>S: "ė_i (slices)"
S->>S: "_{r,j} over window U"
S->>R: "_{α_j}^{(r)} = block mod |α_j|"
R-->>S: "_(α_j)"

end

4) Manifold Projection (Rotation + Foliation)
Chapter Overview

This section introduces the geometric foundation of the Rosario-Wang cryp-
tographic architecture through the mathematical operations of rotation and fo-
liation that transform abstract entropy-driven offsets into concrete, verifiable
cryptographic structures. The section establishes how the manifold projec-
tion process creates the multi-dimensional cryptographic space that enables
the proof-of-knowledge protocol to function. By combining Möbius rotation
operations with systematic foliation algorithms, the system creates a rich, un-
predictable cryptographic environment where each round produces a unique
hyperplane configuration that challenges the authenticating agent’s knowledge.

The importance of this section lies in its mathematical rigor and geomet-
ric intuition, which provide the foundation for understanding how the abstract
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entropy values become concrete cryptographic challenges. The manifold pro-
jection represents the critical transformation phase where mathematical theory
becomes implementable cryptography, creating the spatial framework that en-
ables witness generation and verification. The geometric approach provides
intuitive understanding of the system’s operation while enabling sophisticated
security analysis through mathematical modeling.

The interoperation with the manifold cypher and proof system is struc-
tural: the manifold projection creates the exact cryptographic space that the
authenticating agent must navigate to demonstrate knowledge of the secret.
The rotation operations ensure that each round presents a unique challenge,
while the foliation process creates the zone structure that enables systematic
witness selection. The resulting hyperplanes become the mathematical foun-
dation for all subsequent cryptographic operations, from witness generation to
final verification.

The sub-sections systematically develop the mathematical framework for
manifold construction. Section 4.A introduces the Möbius rotation operation
that creates circular shifts of alphabet rings, establishing the mathematical foun-
dation for introducing randomness into the system. Section 4.B presents the
n-way contiguous foliation algorithm that divides rotated rings into balanced,
non-overlapping slices that form the hyperplanes. Section 4.C establishes the
mathematical relationships between rotation indices and slice origins, creating
the audit trail necessary for verification and replay. Together, these operations
create the complete mathematical framework for transforming entropy into ver-
ifiable cryptographic structures.

4.A) Möbius Rotation

Möbius rotation by k on string s of length |s|:

ρk(s) = s[k : |s| − 1]circs[0 : k − 1], 0 ≤ k < |s|

The Möbius rotation ρk implements a circular shift operation that preserves the
string’s character content while changing the starting position. This rotation is
named after the Möbius strip concept, as it creates a continuous, seamless trans-
formation where characters "wrap around" the string boundary. The operation
extracts the substring from position k to the end, then appends the substring
from the beginning up to position k− 1, effectively rotating the entire string by
k positions clockwise.

This rotation mechanism is crucial for the proof-of-knowledge system be-
cause it ensures that every possible starting position can be reached from any
seed value k. The modulo operation 0 ≤ k < |s| guarantees that the rota-
tion index is always valid, preventing out-of-bounds access while maintaining
the mathematical properties of the transformation. For example, rotating a
30-character alphabet by 7 positions creates a completely different slice pattern
than rotating by 0 or 15 positions.
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4.B) N-Way Contiguous Foliation

n-way contiguous foliation of s into n slices (Agent-tunable; default n = 6):

q =

⌊
|s|
n

⌋
, r = |s| mod n

`j = q + 1{j < r}, a0 = 0, aj+1 = aj + `j

sj = s[aj : aj+1 − 1], j = 0, . . . , n− 1

The foliation process divides a rotated string into exactly n contiguous slices,
where n is configurable during the commitment phase (default n = 6 for this
system). The algorithm first calculates the base slice length q using integer
division, which represents the minimum number of characters each slice will
receive. The remainder r indicates how many slices will get one extra character
to handle cases where the string length isn’t perfectly divisible by n.

The slice length calculation `j = q+1{j < r} uses an indicator function that
adds 1 to the base length for the first r slices. This ensures that all characters
are distributed across the slices while maintaining as much balance as possible.
The starting positions aj are computed incrementally, with each slice beginning
immediately after the previous one ends. This contiguous approach guarantees
that no characters are lost or duplicated during the slicing process.

The final slice extraction sj = s[aj : aj+1 − 1] creates each slice by taking
characters from the calculated range. The range notation [aj : aj+1−1] ensures
that slice boundaries are properly defined and that adjacent slices share no char-
acters, maintaining the disjoint property essential for the proof-of-knowledge
verification.

4.C) Recorded Per-Slice Rotation Index Progression

Recorded per-slice rotation index progression (for logging):

κ(s, n, k, j) = (k + j q) mod |s|

The index progression function κ tracks the mathematical relationship between
the original rotation seed k and the starting position of each slice j in the foliated
string. This function calculates where in the original (unrotated) string each
slice originated from, providing a deterministic mapping that can be used for
verification, logging, and replay purposes.

The formula (k + j · q) mod |s| represents a linear progression through the
rotated string, where each slice j starts q positions further than the previous
slice. The modulo operation ensures that the index wraps around the string
boundary, maintaining consistency with the Möbius rotation concept. This
progression is crucial for maintaining the mathematical integrity of the system,
as it allows auditors to verify that the slices were generated correctly and that
no manipulation occurred during the selection process.
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For the default mode with n = 6, this function provides a systematic way to
track how the 6 slices relate to each other and to the original rotation seed. This
transparency is essential for the proof-of-knowledge system, as it demonstrates
that the witness generation process is deterministic and verifiable rather than
random or arbitrary.

For this program n = 6 (configurable during commitment phase). Example
default sizes yield q values such as: if |SU | = |SL| = 30 then q = 5, r = 0; if
|SN | = 12 then q = 2, r = 0. In general, q and r depend on the Agent-committed
ring sizes and n.

graph LR
subgraph "Rotation"
A["Alphabet α"] --> K["Offset k = "] --> R["Rotated α’ = _k(α)"]

end
subgraph "Foliation _n"
R --> Q["q = |α|/n, r = |α| mod n"]
Q --> L["_j = q + 1{j < r}"]
L --> S["Slices α’_0 .. α’_{n-1}"]

end

5) Per-Round Hyperplane Construction
Chapter Overview

This section describes the dynamic, round-by-round construction of the cryp-
tographic hyperplanes that form the interactive challenge space for the proof-
of-knowledge protocol. The section establishes how each round generates a
completely new hyperplane configuration through independent entropy-driven
seeding, ensuring that knowledge of previous rounds cannot be used to predict
future challenges. By implementing independent random number generation
for each alphabet and round, the system creates a constantly evolving crypto-
graphic environment that maintains unpredictability while preserving mathe-
matical consistency and verifiability.

The importance of this section lies in its demonstration of how the theoreti-
cal manifold projection concepts become practical, implementable cryptographic
operations that can be executed in real-time. The per-round construction en-
sures that each interaction produces a unique challenge, preventing replay at-
tacks and ensuring that the proof-of-knowledge protocol maintains its security
properties across multiple rounds. The independent seeding strategy creates
the mathematical foundation for the system’s resistance to correlation attacks
and ensures that each round’s hyperplane is statistically independent from all
others.

The interoperation with the manifold cypher and proof system is dynamic:
the hyperplane construction process creates the exact cryptographic challenges
that the authenticating agent must solve in each round. The witnesses generated
through this process become the mathematical evidence that the verification cir-
cuit uses to evaluate the proof of knowledge. The round-by-round construction
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ensures that the system can scale to arbitrary numbers of rounds while maintain-
ing security properties, enabling flexible deployment scenarios that can adapt
to different security requirements.

The sub-sections provide a complete description of the hyperplane construc-
tion process. Section 5.A establishes the seed generation mechanism that pro-
vides independent randomness for each round and alphabet, ensuring unpre-
dictability and security. Section 5.B describes the rotation operations that ap-
ply the entropy-derived offsets to create unique alphabet configurations for each
round. Section 5.C explains the n-slice foliation process that divides the rotated
alphabets into the zone structure that enables witness selection. Section 5.D
presents the witness construction process that combines alphabet slices from dif-
ferent zones to create composite witnesses that span multiple character modali-
ties. Together, these operations create the complete round-by-round hyperplane
construction that enables the interactive proof-of-knowledge protocol.

5.A) Seed Generation

For round t draw seeds ktU ∈ {0, . . . , |SU | − 1}, ktL ∈ {0, . . . , |SL| − 1}, ktN ∈
{0, . . . , |SN | − 1} and define:

Note: The system supports an arbitrary number of hyperplanes, with the
specific configuration determined during the commitment phase by the authenti-
cating Agent. The default implementation uses 6 zones, but this is configurable
based on the Agent’s specifications.

5.B) Rotations

Rotations:

Û t = ρktU (SU ), L̂t = ρktL(SL), N̂ t = ρktN (SN )

The rotation phase generates three independently rotated versions of the base
alphabets using randomly selected seeds for each round. Each seed ktU , k

t
L, and

ktN is drawn from the uniform distribution over the respective alphabet’s index
range, ensuring that each round produces a completely different character ar-
rangement. The hat notation (Û t, L̂t, N̂ t) distinguishes these rotated alphabets
from the original base alphabets, emphasizing their transformed state.

This independent seeding strategy is crucial for the security of the proof-
of-knowledge system, as it prevents correlation between rounds and ensures
that knowledge of previous rounds’ witness patterns cannot be used to predict
future rounds. The random selection of seeds makes each round’s hyperplane
construction unpredictable while maintaining the deterministic mathematical
relationships within each round. This randomness is essential for preventing
replay attacks and ensuring that each proof attempt is unique.

5.C) N-Slice Foliations

N-slice foliations (default n = 6): (U t0, . . . , U
t
n−1) = Πn(Û t), (Lt0, . . . , L

t
n−1) =

Πn(L̂t), (N t
0, . . . , N

t
n−1) = Πn(N̂ t)
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The foliation phase applies the 6-way slicing algorithm to each rotated alphabet,
creating six distinct slices per alphabet per round. This process transforms
the continuous rotated strings into discrete, manageable chunks that can be
individually selected and combined. Each slice U tj , Ltj , and N t

j represents a
specific zone j within the round t hyperplane, providing the building blocks for
witness construction.

The parallel foliation of all three alphabets ensures that corresponding zones
across alphabets are aligned and can be meaningfully combined. This alignment
is essential for maintaining the mathematical consistency of the system, as it
guarantees that zone j in the uppercase alphabet corresponds to zone j in
the lowercase and numeric alphabets. The resulting slice structure creates a
6×3 grid of character sets, where each cell contains characters from a specific
alphabet and zone combination.

5.D) Zone-J Witness (Emergent Hyperplane Slice)

Zone-j witness (emergent hyperplane slice):

W t
j = U tj ◦ Ltj ◦N t

j

The witness construction combines the three alphabet slices for a given zone
into a single composite string that represents the full character space available in
that zone for that round. This concatenation creates a rich, multi-dimensional
witness that contains characters from all three character classes, significantly
increasing the probability that any given secret character will be found within
at least one witness.

The term "emergent hyperplane slice" emphasizes that the witness is not
simply a predefined set of characters, but rather emerges from the mathemat-
ical combination of independently generated slices. This emergence property
ensures that the witness content is unpredictable and unique to each round,
while maintaining the deterministic mathematical relationships that make the
system verifiable. The witness serves as the fundamental unit of proof in the sys-
tem, representing the authenticating agent’s knowledge of which zone to select
in each round.

Lengths in default mode: |U tj | = 5, |Ltj | = 5, |N t
j | = 2⇒ |W t

j | = 12.

sequenceDiagram
autonumber
participant G as "RNG"
participant U as "S_U"
participant L as "S_L"
participant N as "S_N"
participant F as "Foliator _n"
participant W as "Witness"
G->>U: "k_U^t"
G->>L: "k_L^t"
G->>N: "k_N^t"
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U->>F: "_{k_U^t}(S_U)"
L->>F: "_{k_L^t}(S_L)"
N->>F: "_{k_N^t}(S_N)"
F-->>W: "W_j^t = U_j^t L_j^t N_j^t"

6) Witness Morphism: Color/Zone ↔ Input Symbols
Chapter Overview

This section establishes the critical bridge between human cognitive pro-
cesses and mathematical cryptographic verification through the witness mor-
phism system that maps user interface inputs to mathematical zone indices.
The section introduces the concept of private morphisms that create a security-
through-obscurity layer while enabling intuitive human-computer interaction.
By establishing bijective mappings between input symbols and hyperplane zones,
the system creates a projective interface that allows authenticating agents to
navigate the cryptographic space naturally while maintaining the mathematical
rigor necessary for security applications.

The importance of this section lies in its fundamental innovation of creating
a human-centric approach to interactive cryptography that maintains strong se-
curity properties. The morphism system represents a departure from traditional
cryptographic protocols that require precise mathematical operations, instead
allowing humans to interact naturally through familiar interface elements while
preserving cryptographic security. The private nature of the morphism adds an
additional layer of security through obscurity, as adversaries cannot determine
the input mapping without additional information about the system’s internal
logic.

The interoperation with the manifold cypher and proof system is interac-
tive: the morphism system translates human input actions into the mathemat-
ical zone selections that drive the witness generation and verification processes.
The zone selections determine which witnesses are captured for each round,
and these witnesses become the mathematical evidence that the verification
circuit uses to evaluate the proof of knowledge. The morphism ensures that
the human-computer interaction layer is completely separated from the mathe-
matical verification layer, maintaining clean security separation while enabling
intuitive operation.

Within we develop the morphism concept from basic principles to practical
implementation. Section 6.A introduces the legend glyphs that represent the in-
put symbols available to authenticating agents, establishing the visual language
of the projective interface. Section 6.B presents example default mappings that
demonstrate how input symbols can be mapped to zone indices, showing both
standard and reversed configurations that provide flexibility in interface design.
Together, these sections establish the complete framework for translating human
input into mathematical cryptographic operations while maintaining security
and usability.
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6.A) Legend Glyphs

Legend glyphs: , , , , /, \.
Important: The specific mapping between input symbols and zone indices

is established by the authenticating Agent during the commitment phase. The
mappings shown below are examples of how such a system might be configured,
but the actual mapping is determined by the Agent’s specifications.

6.B) Example Default Mapping

Example default mapping (DIRECTION_SWITCH = false):

m( ) = 1, m( ) = 4, m( ) = 2, m( ) = 0, m(/) = 5, m(\) = 3

This example mapping function m establishes a direct correspondence between
authenticating agent input symbols and zone indices, creating an intuitive pro-
jective interface where directional keys map to spatially related zones. The
arrow keys (, , , ) are mapped to zones that form a logical spatial pattern, with
the up arrow () corresponding to zone 1 (YELLOW), down arrow () to zone 4
(GREEN), right arrow () to zone 2 (RED), and left arrow () to zone 0 (BLUE).
The slash symbols (/, ) are assigned to zones 5 (BLACK) and 3 (WHITE)
respectively, providing additional input options.

This mapping design considers human cognitive patterns and ergonomics,
placing frequently used directional inputs in easily accessible zones. The spatial
relationship between arrow directions and zone assignments creates a mental
model that authenticating agents can quickly internalize, reducing cognitive
load during the proof-of-knowledge process. The mapping also ensures that all
six zones are accessible through standard keyboard inputs, making the system
usable across different input devices and authenticating agent preferences.

• Example reversed mapping (DIRECTION_SWITCH = true):

mr( ) = 2, mr( ) = 1, mr( ) = 3, mr( ) = 0, mr(/) = 5, mr(\) = 4

This example reversed mapping function mr provides an alternative key-
to-zone assignment that maintains the same mathematical structure while
offering different authenticating agent projective interface layouts. This
reversal primarily affects the arrow key mappings, with the up arrow ()
now corresponding to zone 2 (RED) instead of zone 1, and the down arrow
() mapping to zone 1 (YELLOW) instead of zone 4. The right arrow ()
maps to zone 3 (WHITE), and the left arrow () remains at zone 0 (BLUE)
for consistency. The availability of two distinct mappings serves several
important purposes in the proof-of-knowledge system. First, it provides
flexibility for different authenticating agent projective interface designs
and preferences, allowing the same mathematical core to support multiple
interaction paradigms. Second, it adds an additional layer of configuration
that can be used to customize the system for different applications or
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authenticating agent groups. Third, it demonstrates the robustness of the
underlying algorithm, showing that the proof-of-knowledge mechanics are
independent of the specific input mapping used.

These realize a morphism from the 6 color zones to 6 distinct input symbols
via the zone index.

graph LR
K["Input key ( / \\)"] --> DS{"DIRECTION_SWITCH?"}
DS -- "false" --> M["m: key → zone index"]
DS -- "true" --> MR["m_r: key → zone index"]
M --> Z["Selected zone z_t"]
MR --> Z

7) Interactive Selection and Collection
Chapter Overview

This section establishes the core interactive mechanics of the Rosario-Wang
proof-of-knowledge protocol, describing how authenticating agents navigate the
cryptographic manifold through human-computer interaction to generate veri-
fiable witnesses. The section presents the mathematical framework that trans-
lates human input actions into mathematical zone selections, witness captures,
and evidence accumulation, creating the bridge between intuitive human oper-
ation and rigorous cryptographic verification. By implementing a systematic
collection and validation process, the system ensures that each round produces
verifiable evidence that can be independently reconstructed and audited.

The importance of this section lies in its demonstration of how the theoretical
manifold projection concepts become practical, interactive cryptographic opera-
tions that maintain security while enabling human-centric operation. The inter-
active selection process represents the critical interface between human cognitive
processes and mathematical cryptographic verification, where the authenticat-
ing agent’s knowledge of the secret must be demonstrated through systematic
navigation of the hyperplane space. The collection mechanisms ensure that all
evidence is properly captured, validated, and accumulated for final verification.

The interoperation with the manifold cypher and proof system is operational:
the interactive selection process determines which witnesses are captured in each
round, and these witnesses become the mathematical evidence that drives the
final verification process. The zone selection function translates human input
into mathematical indices, the witness capture process extracts the relevant
character content, and the collection accumulation creates the complete audit
trail necessary for verification. The system maintains mathematical consistency
while providing intuitive human operation.

The sub-sections provide a comprehensive description of the interactive se-
lection and collection process. Section 7.A establishes the zone selection function
that maps authenticating agent inputs to mathematical zone indices, ensuring
deterministic and verifiable selection. Section 7.B describes the witness and
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index capture process that extracts the character content and mathematical
relationships for each round. Section 7.C presents the collection accumulation
mechanisms that build the complete evidence set across all rounds. Section 7.D
covers input processing and validation to ensure data integrity. Section 7.E ex-
plains round synchronization and state management for maintaining mathemat-
ical consistency. Section 7.F addresses error handling and recovery mechanisms
to ensure robust operation. Together, these components create the complete
interactive framework for proof-of-knowledge generation.

7.A) Zone Selection Function

Given authenticating agent keys (k1, . . . , kT ), define zone choices:

zt =


m(kt), if DIRECTION_SWITCH=false

mr(kt), if DIRECTION_SWITCH=true

The zone selection function zt determines which zone the authenticating
agent has selected in each round based on their input key kt and the current di-
rection setting. This function acts as a bridge between the authenticating agent
projective interface layer and the mathematical core of the proof-of-knowledge
system, translating human input actions into mathematical zone indices that
can be processed by the algorithm. The conditional structure ensures that the
appropriate mapping function (m or mr) is applied based on the system config-
uration.

The zone selection process is deterministic and verifiable, as each input key
kt maps to exactly one zone index zt regardless of when the input occurs. This
determinism is essential for the proof-of-knowledge system, as it ensures that
the same sequence of authenticating agent inputs will always produce the same
sequence of zone selections. The mapping functions m and mr are designed
to be bijective, meaning that each zone index is reachable through exactly one
input symbol, preventing ambiguity in the selection process.

7.B) Witness and Index Capture

Witness and index captured at round t:

Xt = W t
zt , It = (κ(SU , n, k

t
U , zt), κ(SL, n, k

t
L, zt), κ(SN , n, k

t
N , zt))

For each round t, the system captures two critical pieces of information: the
witness string Xt and the index triple It. The witness Xt represents the actual
character content that the authenticating agent has selected by choosing zone
zt, serving as the primary evidence in the proof-of-knowledge verification. This
witness contains characters from all three alphabets (uppercase, lowercase, and
numeric) that were available in the selected zone during that specific round.
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The index triple It provides a mathematical audit trail that records exactly
how the witness was generated. Each component of the triple represents the
rotation index that produced the corresponding alphabet slice in the witness.
This index information is crucial for verification purposes, as it allows auditors
to reconstruct the exact mathematical process that generated each witness. The
index triple also serves as a deterministic record that can be used to replay the
witness generation process, ensuring that the system’s behavior is reproducible
and verifiable.

7.C) Collection Accumulation

Collections: X1:T = (X1, . . . , XT ), Z1:T = (z1, . . . , zT ), I1:T = (I1, . . . , IT ).
The collection notation X1:T , Z1:T , and I1:T represents the accumulated evi-
dence from all rounds of the proof-of-knowledge interaction. These collections
serve as the complete record of the authenticating agent’s interaction with the
system, providing all the information necessary for verification and analysis.
The superscript notation 1 : T indicates that the collection spans from round 1
to round T , where T is the total number of rounds completed.

The witness collection X1:T contains all the character strings that the au-
thenticating agent has selected across all rounds, forming the primary evidence
for the proof-of-knowledge claim. The zone collection Z1:T records the sequence
of zone selections, providing insight into the authenticating agent’s decision-
making pattern and the mathematical structure of their selections. The index
collection I1:T maintains the complete audit trail, enabling full reconstruction
and verification of the witness generation process. Together, these three collec-
tions provide a comprehensive view of the proof-of-knowledge interaction that
can be analyzed, verified, and audited.

7.D) Input Processing and Validation

The system processes authenticating agent inputs through a multi-stage val-
idation pipeline that ensures data integrity and consistency. Each input key
kt undergoes validation to ensure it corresponds to a valid zone mapping, and
the resulting zone selection zt is verified to be within the valid range [0, n− 1].
This validation prevents invalid inputs from corrupting the proof-of-knowledge
process and ensures that all zone selections are mathematically sound.

7.E) Round Synchronization and State Management

Each round maintains synchronized state across all system components, ensur-
ing that the manifold construction, zone selection, and witness capture occur in
the correct sequence. The round counter t serves as a synchronization mecha-
nism that coordinates the entropy-driven offset generation, alphabet rotation,
and hyperplane foliation. This synchronization ensures that each round pro-
duces a consistent and verifiable mathematical structure that can be indepen-
dently reconstructed using the logged indices and entropy values.
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7.F) Error Handling and Recovery Mechanisms

The system implements robust error handling for various failure scenarios, in-
cluding invalid inputs, network interruptions, and computational errors. When
errors occur, the system can recover gracefully by maintaining the current round
state and allowing the authenticating agent to retry the input. This resilience
ensures that the proof-of-knowledge process can continue even in the presence
of transient failures, while maintaining the mathematical integrity of the verifi-
cation process.

sequenceDiagram
autonumber
participant A as "Agent"
participant UI as "Projection UI"
participant P as "Morphism (m/m_r)"
participant M as "Manifold"
participant W as "Witness Log"
loop "For t = 1..T"
A->>UI: "Press key k_t"
UI->>P: "Map k_t"
P-->>UI: "z_t"
UI->>M: "Get W_{z_t}^t, I_t"
M-->>UI: "X_t, I_t"
UI->>W: "Append (X_t, I_t)"

end

8) Verifier Rule (Proof-of-Knowledge)
Chapter Overview

This section presents the mathematical foundation of the Rosario-Wang
proof-of-knowledge verification system, establishing the formal rules and algo-
rithms that determine whether an authenticating agent has successfully demon-
strated knowledge of the secret. The section defines the acceptance conditions,
verification algorithms, and decision mechanisms that transform the accumu-
lated witness evidence into a definitive cryptographic proof. By implementing
rigorous mathematical verification with clear acceptance criteria, the system
provides deterministic and auditable proof-of-knowledge validation that main-
tains security while enabling practical deployment.

The importance of this section lies in its establishment of the mathematical
rigor that makes the proof-of-knowledge protocol cryptographically sound and
practically verifiable. The verifier rule represents the culmination of the entire
cryptographic process, where all the mathematical relationships, entropy-driven
offsets, and witness collections are evaluated against the secret to determine
success or failure. The acceptance conditions ensure that partial knowledge is
insufficient, requiring complete demonstration of the secret across all required
rounds while maintaining mathematical consistency and verifiability.
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The interoperation with the manifold cypher and proof system is evalua-
tive: the verifier rule processes the complete evidence set generated through the
interactive selection and collection process, applying mathematical verification
algorithms to determine whether the proof-of-knowledge claim is valid. The
verification process uses the logged indices and entropy values to independently
reconstruct the mathematical relationships that generated each witness, ensur-
ing that the verification is deterministic and reproducible. The system maintains
complete auditability while providing clear, actionable verification results.

The sub-sections systematically develop the verification framework from ba-
sic principles to practical implementation. Section 8.A establishes the secret
structure and requirements that define what constitutes valid knowledge in the
system. Section 8.B presents the formal acceptance condition that mathemati-
cally defines when verification succeeds. Section 8.C introduces the acceptance
indicator as an alternative mathematical formulation that enables efficient com-
putation. Section 8.D establishes the final decision rule that translates math-
ematical results into clear outcomes. Section 8.E describes the verification al-
gorithm implementation that executes the mathematical verification process.
Section 8.F addresses performance optimization and scalability considerations
for practical deployment. Section 8.G covers verification result persistence and
audit capabilities for compliance and analysis. Together, these components cre-
ate the complete verification framework that ensures cryptographic security and
mathematical integrity.

8.A) Secret Structure and Requirements

Let the secret be s = s1s2 · · · sL.
The secret string s represents the knowledge that the authenticating agent is
attempting to prove, with each character si representing a component of that
knowledge. The length L of the secret determines the minimum number of
rounds required for a successful proof, as the system needs at least L witnesses
to potentially contain all the secret characters. Verification is case-sensitive and
applies no normalization; this increases the effective combinatorial space and
resists brute force.

The secret’s structure as a sequence of characters s1s2 · · · sL allows the proof-
of-knowledge system to verify knowledge on a character-by-character basis. This
granular approach ensures that partial knowledge is not sufficient for acceptance,
requiring the authenticating agent to demonstrate complete knowledge of the
entire secret. The sequential indexing also enables the system to establish a one-
to-one correspondence between secret characters and witness rounds, creating
a systematic verification framework.

8.B) Acceptance Condition

Acceptance condition:
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ACCEPT ⇐⇒ T ≥ L ∧
L∧
i=1

1{ si ∈ chars(Xi) } = 1

The acceptance condition consists of two fundamental requirements that must
both be satisfied for the proof-of-knowledge to succeed. The first requirement
T ≥ L ensures that the authenticating agent has provided enough rounds to
potentially contain all the secret characters. This is a necessary but not sufficient
condition, as having enough rounds doesn’t guarantee that the right characters
were selected in each round.

The second requirement uses the logical AND operator (
∧
) to ensure that

every character si in the secret is found (case-sensitive, no normalization) within
the corresponding witness Xi. The indicator function 1{·} returns 1 if the
condition is true and 0 otherwise, making the entire expression evaluate to
1 only when all characters are successfully found. The character extraction
function chars(·) focuses the search on the actual character content rather than
formatting or structure.

8.C) Acceptance Indicator

Equivalently define the acceptance indicator:

A(s,X1:T ) = 1{T ≥ L}
L∏
i=1

1{ si ∈ Xi }

The acceptance indicator A(s,X1:T ) provides an alternative mathematical for-
mulation of the verification rule that is mathematically equivalent but compu-
tationally more convenient. The indicator function 1{T ≥ L} ensures the round
count requirement is met, while the product

∏L
i=1 multiplies together all the

individual character verification results. Since each indicator function returns
either 0 or 1, the product will equal 1 only when all individual verifications
succeed, and 0 if any single verification fails.

This formulation has several advantages: it provides a single numerical value
that represents the overall verification result, it makes it easy to identify which
specific characters failed verification (by examining individual factors), and it
enables efficient computation through simple arithmetic operations. The accep-
tance indicator also makes it clear that the verification process is multiplicative
rather than additive, emphasizing that all conditions must be satisfied simulta-
neously rather than being satisfied to some degree.

8.D) Final Decision Rule

Return PASS iff A = 1, else FAIL.
The final decision rule translates the mathematical acceptance indicator into
a clear, actionable result. When A = 1, all verification conditions have been
met, and the system returns PASS, indicating that the authenticating agent has
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successfully demonstrated knowledge of the secret. When A = 0, at least one
verification condition has failed, and the system returns FAIL, indicating that
the proof-of-knowledge attempt was unsuccessful.

This binary outcome provides clear feedback to both the authenticating
agent and any external systems that might be using the proof-of-knowledge
verification. The PASS/FAIL terminology is intuitive and unambiguous, making
it easy for authenticating agents to understand their verification status. The
deterministic nature of this decision rule ensures that the same input will always
produce the same result, maintaining the mathematical integrity and verifiabil-
ity of the system.

8.E) Verification Algorithm Implementation

The verification algorithm implements the acceptance condition through a sys-
tematic character-by-character search across all witnesses. For each secret
character si, the algorithm searches the corresponding witness Xi using case-
sensitive string matching. The algorithm maintains a verification state that
tracks which characters have been successfully found and which remain to be
verified, enabling early termination when verification becomes impossible.

8.F) Performance Optimization and Scalability

The verification process is optimized for performance through efficient string
matching algorithms and parallel processing capabilities. For large secrets or
high-volume verification scenarios, the system can process multiple verification
requests concurrently while maintaining mathematical correctness. The verifica-
tion algorithm scales linearly with the secret length L and can handle secrets of
arbitrary length limited only by system resources and commitment parameters.

8.G) Verification Result Persistence and Audit

All verification results are persistently stored with complete audit trails, includ-
ing the input witnesses, verification decisions, and computational timestamps.
This persistence enables historical analysis, performance monitoring, and com-
pliance auditing. The audit trail includes both successful and failed verification
attempts, providing comprehensive visibility into the system’s operation and
security posture.

graph TD
S(["Start"]) --> C1{"T ≥ L ?"}
C1 -- "No" --> F1["FAIL"]
C1 -- "Yes" --> C2["Check s_i X_i for i=1..L"]
C2 --> C3{"All true ?"}
C3 -- "No" --> F2["FAIL"]
C3 -- "Yes" --> P["PASS"]
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9) Alphabet Distribution and Properties (Configurable Mode)
Chapter Overview

This section examines the mathematical properties and distribution charac-
teristics of the alphabet systems that form the foundation of the Rosario-Wang
cryptographic architecture, focusing on how character sets are systematically
distributed across hyperplanes to create balanced and secure cryptographic chal-
lenges. The section analyzes the geometric and statistical properties of alphabet
slicing, the mathematical relationships between different character modalities,
and the optimization strategies that ensure uniform distribution across all zones.
By establishing the mathematical framework for alphabet distribution, the sys-
tem creates a robust foundation for witness generation that maintains security
while enabling flexible configuration and deployment.

The importance of this section lies in its demonstration of how mathematical
principles of distribution theory and combinatorics are applied to create crypto-
graphically sound alphabet systems. The alphabet distribution represents the
fundamental building block of the proof-of-knowledge protocol, as the quality
and balance of character distribution directly impacts the security and usability
of the system. The mathematical analysis of distribution properties ensures that
no zone is systematically advantaged or disadvantaged, maintaining the fairness
and unpredictability necessary for cryptographic security while enabling efficient
witness generation and verification.

The interoperation with the manifold cypher and proof system is founda-
tional: the alphabet distribution creates the mathematical structure that deter-
mines how entropy-driven offsets are applied to create unique hyperplane config-
urations in each round. The distribution properties ensure that the rotation and
foliation operations produce mathematically consistent and verifiable results,
while the balance characteristics guarantee that all zones provide equivalent
cryptographic challenges. The configurable nature of the distribution system
enables adaptation to different security requirements and deployment scenarios.

The sub-sections provide a comprehensive analysis of alphabet distribution
from general principles to specific implementations. Section 9.A establishes the
general hyperplane distribution framework that applies to arbitrary alphabet
sizes and zone counts, providing the mathematical foundation for all distri-
bution operations. Section 9.B analyzes the uppercase alphabet distribution,
examining the specific mathematical properties of the 30-character set in the
default 6-zone configuration. Section 9.C examines the lowercase alphabet dis-
tribution, demonstrating how independent seeding maintains security while pre-
serving mathematical consistency. Section 9.D investigates the numeric alpha-
bet distribution, showing how smaller character sets are optimally distributed
across zones. Section 9.E establishes witness length consistency properties that
ensure uniform cryptographic challenges. Section 9.F presents alphabet bal-
ancing and optimization strategies for maintaining security across different al-
phabet configurations. Section 9.G describes dynamic alphabet configuration
capabilities that enable adaptive security deployment. Section 9.H provides
cross-alphabet correlation analysis to ensure mathematical independence and
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security. Together, these analyses create the complete mathematical framework
for alphabet distribution that underpins the entire cryptographic system.

9.A) General Hyperplane Distribution

General n hyperplanes: for any ring of length |s| and hyperplane count n ≥ 2
chosen by the Agent, lengths follow

q =

⌊
|s|
n

⌋
, r = |s| mod n, `j = q + 1{j < r}, j = 0, . . . , n− 1,

yielding disjoint, contiguous coverage. The bullets below describe the default
n = 6 instance.

9.B) Upper Alphabet Distribution

• Upper per round: each zone receives exactly 5 contiguous characters (dis-
joint, covering all 30) in the default 6-zone configuration.
The uppercase alphabet distribution ensures that each of the six zones re-
ceives exactly 5 characters per round, with the total of 30 characters being
perfectly divisible by 6. This uniform distribution creates a balanced char-
acter allocation where no zone is advantaged or disadvantaged in terms of
character count. The contiguous nature of the slices means that characters
within each zone are adjacent in the original alphabet, maintaining some
semantic relationships while ensuring randomness through the rotation
process.

The disjoint property guarantees that no character appears in multiple
zones within the same round, preventing overlap and ensuring that each
character is uniquely assigned to exactly one zone. This property is cru-
cial for the mathematical integrity of the system, as it prevents double-
counting of characters and ensures that the total character coverage across
all zones equals the full alphabet size. The complete coverage property
means that every character in the uppercase alphabet appears in exactly
one zone per round, leaving no characters unassigned.

9.C) Lower Alphabet Distribution

• Lower per round: same as upper, independently seeded.
The lowercase alphabet follows the identical distribution pattern as the
uppercase alphabet, with each zone receiving exactly 5 characters per
round. However, the independent seeding means that the rotation patterns
for uppercase and lowercase alphabets are completely uncorrelated, even
though they follow the same mathematical structure. This independence
is essential for the security of the proof-of-knowledge system, as it prevents
attackers from using knowledge of one alphabet’s distribution to predict
the other’s.
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The parallel structure between uppercase and lowercase alphabets ensures
mathematical consistency and predictability in the system design, while
the independent seeding maintains the randomness and unpredictability
necessary for security. This design choice demonstrates the balance be-
tween mathematical elegance and cryptographic security, where the struc-
ture provides verifiability while the independence provides unpredictabil-
ity.

9.D) Numeric Alphabet Distribution

• Numeric per round: each zone receives exactly 2 contiguous characters
(disjoint, covering all 12) in the default 6-zone configuration.
The numeric alphabet distribution follows the same mathematical princi-
ples as the alphabetic alphabets but with a smaller slice size due to the
smaller alphabet size. With only 12 characters, each zone receives exactly
2 characters per round, maintaining the uniform distribution principle.
The smaller slice size means that each numeric zone contains fewer char-
acters, but this is compensated by the fact that numeric characters are
often more distinctive and easier to identify within a witness.

The numeric alphabet’s perfect divisibility by 6 (12 ÷ 6 = 2) ensures that
the distribution is completely uniform with no remainder to distribute.
This mathematical simplicity makes the numeric component more pre-
dictable and easier to verify, while still contributing to the overall com-
plexity of the witness strings. The numeric characters provide diversity
in the character space, making the witnesses more information-rich and
increasing the probability that any given secret character will be found.

9.E) Witness Length Consistency

• Thus in the default example |W t
j | = 12 for all zones and rounds. In

general, witness length is |W t
j | =

∑
a `a,j over all committed rings, which

depends on the Agent’s alphabet sizes and chosen n.

The consistent length property has several important implications: it en-
sures that all witnesses have equal information content, preventing any
zone from being advantaged by having more characters to work with;
it simplifies the verification algorithm by eliminating the need to han-
dle variable-length witnesses; and it provides a predictable mathematical
structure that can be easily analyzed and verified. This uniformity is
essential for maintaining the mathematical integrity of the system while
ensuring that the proof-of-knowledge process is fair and unbiased across
all zones.

9.F) Alphabet Balancing and Optimization

The system provides mechanisms for balancing alphabets of different sizes to
ensure optimal distribution across hyperplanes. When alphabets have different
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cardinalities, the system can apply padding or balancing techniques to maintain
uniform slice distributions. This balancing ensures that no zone is systematically
disadvantaged by receiving consistently smaller character sets, maintaining the
fairness and security properties of the proof-of-knowledge system.

9.G) Dynamic Alphabet Configuration

The system supports dynamic reconfiguration of alphabets during operation,
allowing Agents to adjust alphabet contents, sizes, or hyperplane counts based
on changing security requirements or performance constraints. This dynamic
configuration capability enables the system to adapt to evolving threat models
while maintaining the mathematical integrity and security properties established
during the commitment phase.

9.H) Cross-Alphabet Correlation Analysis

The system provides tools for analyzing correlations between different alphabets
to ensure that they provide truly independent character spaces. This analysis
helps identify potential weaknesses in alphabet selection and enables optimiza-
tion of alphabet combinations for maximum security. The correlation analysis
considers both statistical properties and semantic relationships between charac-
ters across different alphabets.

graph TD
CM["Commitment: M, {α}, n"]:::core

subgraph A["9.A General Hyperplane Distribution"]
A1["q = |s|/n"]
A2["r = |s| mod n"]
A3["_j = q + 1{j < r}"]
A4["s → slices s_0..s_{n-1} (disjoint, contiguous, cover) [E2]"]
A1 --> A3
A2 --> A3
A3 --> A4

end

CM --> A1
CM --> A2

classDef core fill:#f3f7ff,stroke:#4169e1,color:#111;

graph TD
CM["Commitment: {S_U,S_L,S_N}, n=6 (default)"]:::core

subgraph B["9.B Upper"]
B1["|S_U|=30"] --> B2["q_U=5, r=0"]
B2 --> B3["_{U,j}=5"]

35



B3 --> B4["U_j^t"]
end

subgraph C["9.C Lower"]
C1["|S_L|=30"] --> C2["q_L=5, r=0"]
C2 --> C3["_{L,j}=5"]
C3 --> C4["L_j^t"]

end

subgraph D["9.D Numeric"]
D1["|S_N|=12"] --> D2["q_N=2, r=0"]
D2 --> D3["_{N,j}=2"]
D3 --> D4["N_j^t"]

end

CM --> B1
CM --> C1
CM --> D1

subgraph E["9.E Witness Length Consistency"]
E1["|W_j^t| = _a _{a,j} [E4]"] --> E2["Default: 5+5+2 = 12"]

end

B4 --> E1
C4 --> E1
D4 --> E1

classDef core fill:#f3f7ff,stroke:#4169e1,color:#111;

graph TD
subgraph F["9.F Balancing & Optimization"]
F1["Balance/pad alphabets (e.g., add ♠♣)"]
F2["Goal: uniform _{a,j} across zones"]
F1 --> F2

end

subgraph G["9.G Dynamic Alphabet Configuration"]
G1["Adjust M, n, |α_a|, contents (at commitment)"]
G2["Recompute q, r, _{a,j}"]
G1 --> G2

end

subgraph H["9.H Cross-Alphabet Correlation Analysis"]
H1["Measure cross-ring correlations"]
H2["Ensure independence / minimize leakage"]
H1 --> H2
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end

F2 --> G1
H2 --> F1
G2 --> R1["Update 9.A–9.D parameters"]
R1 --> R2["Refresh distributions and |W_j^t|"]

classDef note fill:#fff7e6,stroke:#f0a500,color:#111;

10) Logged Indices and Determinism (Configurable Mode)
Chapter Overview

This section establishes the mathematical framework for deterministic re-
play and auditability in the Rosario-Wang cryptographic system, describing how
logged indices enable complete reconstruction and verification of the proof-of-
knowledge process while maintaining the unpredictability necessary for security.
The section presents the mathematical relationships between entropy-driven
seeds, rotation offsets, and zone selections that create the audit trail, demon-
strating how the system balances cryptographic randomness with mathematical
determinism. By implementing comprehensive index logging and deterministic
replay capabilities, the system provides unprecedented transparency and verifi-
ability in interactive cryptography while maintaining strong security properties.

The importance of this section lies in its demonstration of how the system
achieves the seemingly contradictory goals of cryptographic unpredictability and
mathematical determinism. The logged indices represent the critical bridge be-
tween the entropy-driven randomness that ensures security and the mathemati-
cal relationships that enable verification and audit. This balance is essential for
practical deployment, as it allows external auditors to verify system operation
without compromising the security properties that make the system resistant
to attacks. The deterministic replay capability provides a level of transparency
that is rare in cryptographic systems while maintaining the mathematical rigor
necessary for security applications.

The interoperation with the manifold cypher and proof system is analytical:
the logged indices provide the mathematical foundation for reconstructing the
exact hyperplane configurations that were presented to authenticating agents in
each round, enabling independent verification of the entire proof-of-knowledge
process. The index calculations maintain the mathematical relationships be-
tween entropy values, rotation seeds, and zone selections, creating a complete
audit trail that can be used to verify system operation, debug issues, and en-
sure compliance with security requirements. The deterministic nature of these
calculations ensures that verification is reproducible and reliable.

The sub-sections systematically develop the index logging and determinism
framework from mathematical foundations to practical implementation. Section
10.A establishes the general index calculation framework that applies to arbi-
trary alphabet sizes and zone configurations, providing the mathematical foun-
dation for all index operations. Section 10.B presents the default configuration
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indices that demonstrate the specific mathematical relationships in the 6-zone
system with 30-character alphabets. Section 10.C describes the independent
seed generation process that ensures cryptographic randomness while maintain-
ing mathematical consistency. Section 10.D explains the deterministic replay
capability that enables complete verification and audit of proof-of-knowledge
sessions. Section 10.E addresses index integrity and tamper detection mech-
anisms that protect the audit trail from manipulation. Section 10.F covers
index compression and storage optimization techniques for efficient long-term
retention. Section 10.G describes real-time index validation that ensures math-
ematical correctness during operation. Section 10.H provides cross-round index
correlation analysis to identify potential weaknesses in the entropy-driven off-
set generation. Together, these components create the complete framework for
mathematical transparency and cryptographic auditability that distinguishes
the Rosario-Wang system from traditional cryptographic approaches.

10.A) General Index Calculation

For general n with ring-specific base slice lengths qU = b|SU |/nc, qL = b|SL|/nc,
qN = b|SN |/nc, the logged indices for a selection of zone j in round t are

I
(general)
t = ((ktU + qU j) mod |SU |, (ktL + qLj) mod |SL|, (ktN + qN j) mod |SN |).

10.B) Default Configuration Indices

In the default 6-zone configuration this simplifies to:
For a selection of zone j in round t:

It = ((ktU + 5j) mod 30, (ktL + 5j) mod 30, (ktN + 2j) mod 12)

The index calculation formula provides a deterministic way to compute the
exact rotation positions that generated each slice in the witness for zone j in
round t. The formula uses the base slice lengths (5 for uppercase and lowercase,
2 for numeric) multiplied by the zone index j, then adds the rotation seed
for that round and applies the modulo operation to wrap around the alphabet
boundaries. This calculation ensures that the index progression follows the same
mathematical pattern used in the foliation process.

Note: The specific slice lengths (5, 5, 2) and the number of zones (6) are
determined during the commitment phase by the authenticating Agent. The
formula shown above represents the default configuration but can be adjusted
based on the Agent’s specifications.

The three components of the index triple correspond to the three alphabets:
the first component (ktU +5j) mod 30 represents the starting position in the up-
percase alphabet, the second component (ktL+5j) mod 30 represents the starting
position in the lowercase alphabet, and the third component (ktN + 2j) mod 12
represents the starting position in the numeric alphabet. Each component is
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calculated independently using the appropriate alphabet size and slice length,
ensuring mathematical consistency across all three character sets.

The modulo operations ensure that all indices remain within the valid range
for their respective alphabets: 0-29 for uppercase and lowercase (30 charac-
ters), and 0-11 for numeric (12 characters). This boundary handling is essential
for maintaining the mathematical integrity of the system and preventing index
overflow errors. The deterministic nature of these calculations means that given
the same seeds and zone selection, the same indices will always be produced,
enabling reliable verification and replay of the witness generation process.

Here seeds ktU , k
t
L, k

t
N are derived from independent calls to the shell RNG

and recorded per round.
The independent random number generation for each alphabet ensures that the
rotation patterns are completely uncorrelated across alphabets and rounds, pro-
viding the randomness necessary for cryptographic security. Each seed is gen-
erated independently using the system’s random number generator, preventing
any predictable relationships between different alphabets or between different
rounds. This independence is crucial for preventing attacks that might attempt
to exploit correlations in the rotation patterns.

The recording of seeds per round serves multiple important purposes: it
provides an audit trail that can be used to verify the mathematical correctness
of the witness generation process; it enables replay and debugging of specific
rounds for analysis purposes; and it maintains the deterministic nature of the
system while preserving the randomness of the seed selection. The combination
of random seed generation and deterministic index calculation creates a system
that is both unpredictable and verifiable, balancing security requirements with
mathematical rigor.

This logging approach demonstrates the system’s commitment to trans-
parency and verifiability, as every mathematical operation can be reconstructed
and verified using the recorded seeds and the deterministic formulas. This trans-
parency is essential for the proof-of-knowledge system, as it allows external au-
ditors to verify that the system is operating correctly and that no manipulation
has occurred during the witness generation or verification processes.

10.C) Independent Seed Generation

The system generates independent random seeds for each alphabet and round to
ensure maximum unpredictability and security. Each seed ktα is generated using
cryptographically secure random number generation techniques, ensuring that
the rotation patterns cannot be predicted or reproduced by any computational
means. The independence between seeds prevents correlation attacks and en-
sures that knowledge of one alphabet’s rotation pattern provides no information
about other alphabets or rounds.
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10.D) Deterministic Replay Capability

The logged indices enable deterministic replay of the entire proof-of-knowledge
session, allowing auditors to independently verify the mathematical correctness
of the witness generation process. Given the original entropy E , time coeffi-
cient τ , and the logged seeds, any party can reconstruct the exact manifold that
was presented to the authenticating agent. This replay capability provides un-
precedented transparency and auditability in interactive cryptography, enabling
third-party verification without requiring access to the original system state.

10.E) Index Integrity and Tamper Detection

The system implements cryptographic integrity checks on logged indices to de-
tect any tampering or manipulation of the audit trail. Each index triple is
cryptographically signed using the entropy-derived keys, ensuring that any mod-
ification of the logged data will be detected. This integrity protection is essential
for maintaining the trustworthiness of the audit trail and preventing adversaries
from manipulating the verification process through index corruption.

10.F) Index Compression and Storage Optimization

The system employs efficient compression and storage techniques for logged in-
dices to minimize storage requirements while maintaining full auditability. Index
compression algorithms reduce storage overhead without losing any information,
enabling long-term retention of audit trails for compliance and security analy-
sis. The compressed format maintains the mathematical properties necessary
for deterministic replay while optimizing storage efficiency.

10.G) Real-Time Index Validation

During operation, the system performs real-time validation of generated indices
to ensure mathematical correctness and consistency. Each index is validated
against the mathematical constraints of the foliation process, and any anomalies
are flagged for investigation. This real-time validation prevents the accumula-
tion of errors and ensures that the audit trail remains accurate and verifiable
throughout the proof-of-knowledge session.

10.H) Cross-Round Index Correlation Analysis

The system provides tools for analyzing correlations between indices across dif-
ferent rounds to identify potential patterns or weaknesses in the entropy-driven
offset generation. This analysis helps ensure that the rotation patterns remain
unpredictable and uncorrelated across rounds, maintaining the security proper-
ties of the system. The correlation analysis considers both statistical properties
and mathematical relationships between indices across the entire session.

graph LR
IN["Inputs: k_U^t, k_L^t, k_N^t, z_t"] --> Q["q_α = |α|/n"]
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Q --> I["I_t = ((k_U^t + q_U z_t) mod |S_U|,<br/>(k_L^t + q_L z_t) mod |S_L|,<br/>(k_N^t + q_N z_t) mod |S_N|)"]
I --> SIG["Sign/Store I_t"]
SIG --> RP["Deterministic replay with (, τ, I_t)"]

11) End-to-End Example: n-ary Secret (example L = 6)
This chapter presents a comprehensive end-to-end demonstration of the Rosario-
Wang Proof (RWP) cryptographic architecture, illustrating the complete work-
flow from initial commitment through final verification. The example serves as
a pedagogical foundation for understanding how the manifold cypher system’s
theoretical constructs manifest in practical implementation, providing concrete
instantiations of the abstract mathematical principles developed in preceding
sections. By walking through a complete protocol execution with specific pa-
rameter values, this chapter bridges the gap between theoretical formulation and
operational reality, enabling readers to grasp the intricate interplay between en-
tropy generation, manifold construction, and proof verification.

The importance of this end-to-end example cannot be overstated within
the broader context of the RWP cryptographic architecture. While previous
chapters establish the mathematical foundations and theoretical security prop-
erties, this demonstration validates the practical feasibility of the system and
demonstrates how the various components integrate seamlessly to achieve the
desired cryptographic objectives. The example showcases the system’s flexibil-
ity through Agent-tunable parameters, illustrating how different configurations
can be instantiated while maintaining the core security guarantees. Further-
more, this concrete instantiation serves as a reference implementation that can
be used to verify the correctness of theoretical analyses and guide future system
development.

The example’s integration with the manifold cypher and proof system demon-
strates several key architectural principles. First, it shows how the commitment
phase establishes a binding agreement on system parameters that cannot be
retroactively modified, ensuring the integrity of the entire protocol. Second,
it illustrates how entropy-driven randomness creates unpredictable yet verifi-
able hyperplane configurations, maintaining security while enabling determin-
istic verification. Third, it demonstrates how the projective interface translates
human-agent interactions into mathematical operations, creating an intuitive
bridge between user experience and cryptographic rigor. Finally, it shows how
the accumulator equation provides a compact representation of the entire proof
transcript, enabling efficient verification while maintaining full auditability.

The detailed coverage in this chapter encompasses the complete protocol
lifecycle, beginning with parameter commitment and secret establishment, pro-
ceeding through entropy generation and manifold construction, continuing with
interactive proof generation and witness capture, and concluding with verifica-
tion and acceptance determination. Sub-sections [11.A] through [11.J] systemat-
ically walk through each phase, providing mathematical formulations, concrete
examples, and implementation details. The chapter culminates with the formal
accumulator equation that encapsulates the entire proof system, demonstrating
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how the Rosario-Wang architecture achieves its security objectives through a
combination of mathematical rigor, cryptographic commitment, and interactive
verification protocols.

Note: This example instantiates Agent-tunable parameters as (M = 3 al-
phabets; n = 6 hyperplanes; secret length L = 6; entropy size 256 bits; time
mixing disabled unless stated). All of these are Agent-tunable during the com-
mitment phase. In general the protocol supports arbitrary L ≥ 1; the choice
L = 6 here is illustrative only.

[11.A] Secret: s = "A0#gT9" so L = 6 (example; general L is arbitrary).

The AGENT begins the proof-of-knowledge protocol by establishing the secret
string "A0#gT9" that the authenticating agent must prove knowledge of. This
6-character example contains a mix of uppercase letters (A, T), lowercase letters
(g), numeric digits (0, 9), and special symbols (#), demonstrating the system’s
ability to handle diverse character types. In general, the secret length L is n-ary
(arbitrary) and is selected during commitment. The verification circuit records
this L and requires at least T ≥ L rounds of interaction to potentially complete
the proof.

graph LR
L["L (length)"] --> S1["s1"]
L --> S2["s2"]
L --> S3["..."]
L --> SL["sL"]

[11.B] Mode: default configuration (DIRECTION_SWITCH=false) as spec-
ified during commitment phase.

The AGENT configures the system in default mode, which means the arrow
keys and slash symbols will map to zones using the standard mapping function
m rather than the reversed mapping mr. This configuration was determined
during the commitment phase and determines how authenticating agent input
will be interpreted throughout the entire protocol, ensuring consistency between
the AGENT’s projective interface presentation and the verification circuit’s in-
put processing. The default mode creates an intuitive spatial relationship where
up/down/left/right arrows correspond to logically positioned zones in the pro-
jective interface.

flowchart LR
K["Key ( / \\)"] --> DS{"DIRECTION_SWITCH?"}
DS -- false --> M["m: key→zone"]
DS -- true --> MR["m_r: key→zone"]
M --> Z["z_t"]
MR --> Z
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[11.C] Example seeds (rounds t = 1..6):

• t = 1: (k1
U , k

1
L, k

1
N ) = (7, 19, 3)

• t = 2: (12, 4, 8)

• t = 3: (27, 0, 10)

• t = 4: (5, 25, 6)

• t = 5: (18, 9, 1)

• t = 6: (23, 2, 11)
The AGENT generates six independent sets of random seeds, one for each
round of the protocol. Each set contains three seeds: ktU for the uppercase
alphabet, ktL for the lowercase alphabet, and ktN for the numeric alphabet.
These seeds are generated using the system’s random number generator
and are completely independent between rounds and between alphabets,
ensuring that each round produces a unique and unpredictable hyperplane
configuration. The verification circuit records these seeds for each round,
enabling it to reconstruct the exact mathematical process that generated
each witness and to verify that the AGENT’s operations were mathemat-
ically correct.

For example, in round 1, the AGENT rotates the uppercase alphabet by
7 positions, the lowercase alphabet by 19 positions, and the numeric alphabet
by 3 positions. These rotations create completely different starting points for
the foliation process, ensuring that the character slices in each zone are unique
to that round. The verification circuit uses these seeds to compute the exact
indices where each slice begins, creating a mathematical audit trail that can be
verified independently.

sequenceDiagram
autonumber
participant RNG
participant U as S_U
participant L as S_L
participant N as S_N
loop t=1..T
RNG->>U: k_U^t
RNG->>L: k_L^t
RNG->>N: k_N^t

end

[11.D] Agent keys (example): (, \, , /, , )

The authenticating agent interacts with the AGENT’s projective interface by
pressing a sequence of keys over six rounds. In this example, the authenticat-
ing agent presses: up arrow (), backslash (), right arrow (), forward slash (/),

43



left arrow (), and down arrow (). Each key press represents the authenticating
agent’s choice of which zone to select in that round, based on the visual presen-
tation of witnesses that the AGENT displays. The AGENT captures each key
press and maps it to the corresponding zone index using the default mapping
function, creating a sequence of zone selections that will be used to construct
the proof.

The verification circuit receives this sequence of authenticating agent inputs
and processes each one according to the established mapping rules. The circuit
doesn’t need to know which specific keys were pressed; it only needs to know
which zones were selected, as the mathematical verification depends on the zone
indices, not the input method. This abstraction allows the system to support
different input devices and agent projective interface designs while maintaining
the same mathematical core.

flowchart LR
K1[""]-->Z1["z1=1"]
K2["\\"]-->Z2["z2=3"]
K3[""]-->Z3["z3=2"]
K4["/"]-->Z4["z4=5"]
K5[""]-->Z5["z5=0"]
K6[""]-->Z6["z6=4"]

[11.E] Zone mapping: z1 = 1, z2 = 3, z3 = 2, z4 = 5, z5 = 0, z6 = 4.

The AGENT translates each authenticating agent key press into a zone index
using the default mapping function. The up arrow () maps to zone 1 (YEL-
LOW), backslash () maps to zone 3 (WHITE), right arrow () maps to zone 2
(RED), forward slash (/) maps to zone 5 (BLACK), left arrow () maps to zone
0 (BLUE), and down arrow () maps to zone 4 (GREEN). This mapping creates
a sequence of zone selections that determines which witness from each round
will be captured for the proof.

The verification circuit receives this zone sequence and uses it to extract the
corresponding witnesses from each round’s hyperplane. Each zone index zt tells
the circuit which of the six available witnesses in round t should be included
in the proof. This zone-to-witness mapping is deterministic and verifiable, as
the circuit can independently compute which witness corresponds to each zone
using the recorded seeds and the mathematical formulas.

flowchart LR
Z0["0 BLUE"] --- Z1["1 YELLOW"] --- Z2["2 RED"] --- Z3["3 WHITE"] --- Z4["4 GREEN"] --- Z5["5 BLACK"] --- Z0

[11.F] Compute indices It using default qU = qL = 5, qN = 2:

• I1 = (12, 24, 5), I2 = (27, 19, 2), I3 = (7, 10, 2),

• I4 = (30 mod 30 = 0, 15, 4), I5 = (18, 9, 11), I6 = (23, 22, 7).
The verification circuit computes the exact rotation indices that generated
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each slice in the selected witnesses. For each round t and selected zone
zt, the circuit calculates where in the original (unrotated) alphabets each
slice began. The formula (ktU + 5zt) mod 30 for uppercase and lowercase,
and (ktN + 2zt) mod 12 for numeric, provides the deterministic mapping
from seeds and zones to slice origins.

For example, in round 1 with zone 1, the circuit computes: uppercase index
(7 + 5 · 1) mod 30 = 12, lowercase index (19 + 5 · 1) mod 30 = 24, and numeric
index (3 + 2 · 1) mod 12 = 5. These indices tell the circuit that the uppercase
slice in zone 1 started at position 12 in the original alphabet, the lowercase slice
started at position 24, and the numeric slice started at position 5. This informa-
tion creates a complete audit trail that can be used to verify the mathematical
correctness of the witness generation process.

flowchart LR
subgraph Inputs
K["k_U^t, k_L^t, k_N^t"]
Z["z_t"]
Q["q_U=5, q_L=5, q_N=2"]
SU["|S_U|=30"]:::dim
SL["|S_L|=30"]:::dim
SN["|S_N|=12"]:::dim

end
K --> IU
Z --> IU
Q --> IU
SU --> IU
K --> IL
Z --> IL
Q --> IL
SL --> IL
K --> IN
Z --> IN
Q --> IN
SN --> IN

IU["I_U^t = (k_U^t + q_U·z_t) mod |S_U| [10.A/10.B]"]
IL["I_L^t = (k_L^t + q_L·z_t) mod |S_L| [10.A/10.B]"]
IN["I_N^t = (k_N^t + q_N·z_t) mod |S_N| [10.A/10.B]"]

classDef dim fill:#eee,stroke:#bbb,color:#666;

[11.G] Witnesses captured: Xt = W t
zt (each |Xt| = 12).

The AGENT captures the witness string from each selected zone in each round,
creating a sequence of six witnesses that will form the proof. Each witness
Xt contains exactly 12 characters: 5 from the uppercase alphabet, 5 from the
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lowercase alphabet, and 2 from the numeric alphabet, all from the zone that
the authenticating agent selected in that round. The verification circuit receives
these witnesses and stores them for the final verification step, maintaining the
order and correspondence between rounds and secret characters.

The witness capture process is deterministic and verifiable, as each witness
Xt is uniquely determined by the round t, the selected zone zt, and the seeds
ktU , k

t
L, and k

t
N for that round. The circuit can independently verify that each

captured witness matches what should have been generated given the recorded
seeds and zone selections, ensuring that no manipulation occurred during the
witness capture process.

flowchart TD
U["U_j^t (5)"] --> C[concat]
L["L_j^t (5)"] --> C
N["N_j^t (2)"] --> C
C --> W["W_j^t (|W|=12)"]
W --> X["X_t=W_{z_t}^t"]
X --> I["I_t (logged)"]

[11.H] Acceptance check (conceptual): require

A ∈ X1, 0 ∈ X2, # ∈ X3, g ∈ X4, T ∈ X5, 9 ∈ X6

If all hold true, PASS; otherwise FAIL.

flowchart TD
T["T ≥ L?"] -->|No| F1["FAIL"]
T -->|Yes| C{"i: s_i X_i ?"}
C -->|Yes| P["PASS"]
C -->|No| F2["FAIL"]

[11.I] Accumulator Equation (Rosario–Wang Direct Proof)

Here is the direct proof (accumulator) equation for the Rosario–Wang Proof:

Λ =

n∧
R=1

M
(
pi, x

R
i

)
• Inline meaning:

– Λ (lambda) is the proof accumulator; it evaluates to true iff every
required membership check in the transcript is true across all rounds
R = 1, . . . , n.

– pi is the i-th secret symbol of the committed sequence P = {p1, . . . , p|P |};
xRi ⊆ XR is the verifier’s round-R target subset inside the shuffled
alphabet XR.

– Membership predicate:
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M(pi, x
R
i ) = true ⇐⇒ pi ∈ xRi .

This is the per-query verification condition used inside the conjunction.

• Consequence (direct proof): If Λ holds, then every pi has been found in
its designated subset xRi in every round R, i.e., the verifier accepts the
proof of knowledge for the entire sequence.

• Optional notation: One often writes Λ =
∧n
R=1

∧|P |
i=1 M(pi, x

R
i ) to make

the per-element conjunction explicit; the displayed form above is the
canonical statement in the documents (cf. ENTROPY/PROOF.BASH.md, ENTROPY/THEORY.md).

• Alignment with this document’s variables (case-sensitive):

– For round R, the verifier’s selected witness is XR = WR
zR (see [E6]).

– The membership predicate specializes to M(pR, XR) ⇐⇒ pR ∈ XR,
under the common 1-to-1 mapping i=R used in minimal transcripts
(i.e., one secret symbol per round, n=L).

– In the general multi-symbol model (e.g., multiple secret indices checked
per round), let xRi denote the designated subset for symbol pi at
round R; then the explicit form Λ =

∧n
R=1

∧|P |
i=1 M(pi, x

R
i ) applies.

• Relation to [E7] (acceptance indicator): With T ≥ L and the 1-to-1 map-
ping i=R, the acceptance rule

∧L
i=1 1{si ∈ Xi}=1 is exactly the accumu-

lator Λ written with indicator functions. Both are strictly case-sensitive
in this document.

• Multi-alphabet witness and predicate: Each round’s witness XR is a con-
catenation XR = αR1,zR ◦· · ·◦α

R
M,zR

of the selected hyperplane slices across
M alphabets (see [E4]). The predicate M(pi, XR) evaluates true iff pi ap-
pears in any of these slices, with no normalization.

• Logged indices and auditability: When M(pi, XR) is true, the logged triple
(or M -tuple) of indices IR (see §10) provides an auditable record of the
rotation origins that produced XR, enabling deterministic replay under
the committed (E , τ).

[11.J] Composition: From Commitment to Cryptographic Proof of
Knowledge

This subsection summarizes how the commitment, entropy/time, manifold, and
alphabets compose into a compact, verifiable proof of knowledge (PoK):

1) Commitment (Agent-tunable parameters)
The Agent commits to: number of alphabets M , the enumerated alphabets

{α1, . . . , αM} (arbitrary modalities/sizes), hyperplane count n, secret length
L, input morphisms, and the base entropy size/rules. Alphabets are strictly
case-sensitive; uppercase and lowercase are distinct symbols.
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The commitment phase establishes the foundational cryptographic parame-
ters that determine the entire proof system’s structure and security properties.
By allowing the Agent to select arbitrary alphabets across different modalities
(text, emoji, images, audio, etc.), the system achieves unprecedented flexibility
while maintaining cryptographic rigor. The case sensitivity requirement doubles
the effective symbol space for text-based alphabets, significantly increasing the
permutation space and resistance to brute force attacks.

This tunability is crucial for practical deployment scenarios where different
applications may require different security levels or authenticating agent expe-
rience constraints. For instance, a high-security financial application might use
large, diverse alphabets with many hyperplanes, while a authenticating agent-
friendly mobile app might opt for smaller, more intuitive symbol sets. The
commitment ensures that all parties agree on the rules of engagement before
any interaction begins.

The commitment equation formalizes this as:

C = (M, {α1, . . . , αM}, n, L, φ, |E|, τenabled)

where C is the commitment tuple, φ represents the input morphism mapping, |E|
is the entropy bit length, and τenabled is a boolean indicating time mixing. This
commitment binds the Agent to specific parameters while allowing the Verifying
Circuit to deterministically reconstruct the manifold under the agreed-upon
rules.

The commitment mechanism serves as the cryptographic foundation that
enables the entire proof system to function as a zero-knowledge protocol. By
binding the Agent to specific parameters before any interaction begins, the
commitment prevents retroactive manipulation of the proof conditions and en-
sures that the verification process is fair and consistent. This pre-commitment
approach is essential for achieving the security properties of interactive sigma
protocols while maintaining the flexibility needed for real-world applications.

The multi-alphabet approach significantly enhances the system’s security by
creating a combinatorial explosion in the effective symbol space. When usingM
alphabets with sizes |α1|, |α2|, . . . , |αM |, the total permutation space becomes∏M
j=1 |αj |!, which grows exponentially with the number and size of alphabets.

This large space makes it computationally infeasible for adversaries to enumerate
all possible secrets or predict the manifold structure.

The hyperplane count n provides a crucial security parameter that deter-
mines the granularity of the proof system. A larger value of n creates more
zones, increasing the precision with which the Agent must demonstrate knowl-
edge while also expanding the morphism configuration space to n! possibili-
ties. This parameter allows fine-tuning of the security-performance trade-off,
enabling the system to adapt to different threat models and computational con-
straints.

flowchart RL
A["Agent"] --> P["Select parameters"]
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subgraph PARAMS["Agent-tunable parameters"]
direction LR
M["M (# alphabets)"]
AL["{α..α_M} (modalities; case-sensitive: Upper Lower)"]
N["n (hyperplanes)"]
L["L (secret length)"]
PHI["ϕ (input morphism)"]
Ebits["|| (entropy bit length)"]
Tau["τ_enabled (time mixing on/off)"]

end

P --> M
P --> AL
P --> N
P --> L
P --> PHI
P --> Ebits
P --> Tau

C[" = (M, {α..α_M}, n, L, ϕ, ||, τ_enabled)"]
M --> C
AL --> C
N --> C
L --> C
PHI --> C
Ebits --> C
Tau --> C

DET["Determinism: given (, τ) and → reproducible manifold"]
C --> DET
Ebits --> DET
Tau --> DET

VC["Verifying Circuit (reconstructs manifold under )"]
DET --> VC

subgraph SECURITY["Security & scaling implications"]
direction LR
PS["Permutation space: |α_j|! (multi-alphabet)"]
MC["Morphism configurations: n! (via ϕ)"]
GZ["Granularity via n (more zones → precision)"]
FLEX["Modality flexibility (text, emoji, images, audio, ...)"]
PRE["Pre-commitment prevents retroactive manipulation (-protocol)"]

end
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C --> PRE
AL --> PS
N --> MC
N --> GZ
AL --> FLEX

2) Entropy and time (spin states)
The Verifying Circuit ingests (E , τ) and forms time-mixed slices ẽi, selects

blocks via κR,j , and computes per-ring offsets Θ
(R)
αj = blockR,j mod |αj |. These

offsets function as per-ring spin states and fully determine the manifold at round
R.

The entropy-driven spin states represent the core innovation that distin-
guishes this system from traditional interactive protocols. By using a large base
entropy integer (256-512 bits) as the foundation for deriving all rotation offsets,
the system achieves true randomness that cannot be predicted or manipulated
by any party. The time coefficient τ adds an additional layer of unpredictability
at microsecond resolution, ensuring that even identical entropy values produce
different manifolds at different times.

The fractal reduction mechanism through the Rosario modulo index func-
tion creates a deterministic yet unpredictable mapping from entropy blocks to
ring-specific offsets. This approach ensures that the same entropy value will al-
ways produce the same manifold for a given commitment, enabling reproducible
verification while maintaining the security properties of random sampling. The
spin state metaphor emphasizes that each alphabet ring operates independently
under its own rotation dynamics.

The spin state equation captures this process:

Θ(R)
αj = blockR,j mod |αj | =

⌊
E ⊕ (τ � 64)

264(R−1)+32(j−1)

⌋
mod |αj |

where ⊕ denotes bitwise XOR, � is left shift, and the division extracts the
(R, j)-th 32-bit block from the entropy-time mixture. This equation shows how
entropy and time combine to produce ring-specific, round-specific offsets that
drive the entire manifold construction.

The entropy-driven approach provides several critical advantages over tra-
ditional pseudo-random number generation. First, the use of cryptographically
strong entropy sources (such as hardware random number generators or quan-
tum entropy) ensures that the spin states cannot be predicted or reproduced by
any computational means. Second, the time mixing component adds a temporal
dimension that makes the system resistant to replay attacks and ensures that
each interaction produces a unique manifold even with identical entropy values.

The fractal block extraction mechanism creates a deterministic mapping that
preserves the statistical properties of the original entropy while enabling efficient
computation of round-specific and ring-specific offsets. This approach ensures
that the entropy is used efficiently across all rounds and alphabets, maximizing
the randomness available to the system while maintaining the computational
efficiency necessary for real-time verification.
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The spin state concept represents a fundamental departure from traditional
cryptographic protocols that rely on shared secrets or public-key infrastructure.
By deriving all cryptographic operations from a single entropy source, the sys-
tem eliminates the need for complex key management while maintaining strong
security properties. This approach is particularly valuable in scenarios where
traditional key distribution is impractical or where the system must operate in
isolated environments.

flowchart TD
E["Base entropy "] --> S["Slice e_i (base 10^3)"]
S --> DS{"τ_enabled?"}
DS -- "Yes" --> TM["ė_i = (τ·e_i) mod 10^3 [2.C]"]
DS -- "No" --> SKIP["e_i"]
TM --> K
SKIP --> K
K["_{r,j} over window U [E8]"] --> B["block_{r,j}"]
B --> TH["_{α}^{(r)} = block mod |α| [E19]"]

3) Manifold construction (rotation + foliation)
Each ring is rotated by Θ, then foliated into n hyperplanes via Πn. For zone

z the round-R witness is WR
z = αR1,z ◦ · · · ◦ αRM,z.

The manifold construction phase transforms the abstract mathematical con-
cepts of entropy and offsets into concrete, verifiable cryptographic structures.
The Möbius rotation operation ρΘ(α) creates a circular shift of the alphabet ring
by Θ positions, effectively randomizing the symbol ordering while maintaining
the ring’s algebraic properties. This rotation ensures that even if an adversary
knows the original alphabet, they cannot predict the rotated ordering without
knowledge of the entropy.

The foliation process Πn divides each rotated ring into n contiguous, non-
overlapping slices, creating the hyperplanes that form the basis for the proof
system. This n-way partitioning ensures that each hyperplane contains a rep-
resentative sample of the rotated alphabet, maintaining the statistical proper-
ties necessary for secure verification. The concatenation operation ◦ combines
slices from different alphabets to create composite witnesses that span multiple
modalities.

The manifold construction equation formalizes this process:

WR
z =©M

j=1α
R
j,z = αR1,z ◦ αR2,z ◦ · · · ◦ αRM,z

where αRj,z = Πn(ρ
Θ

(R)
αj

(αj))[z] represents the z-th slice of the j-th rotated al-
phabet at round R. This equation shows how the manifold emerges from the
coordinated rotation and slicing of multiple independent alphabet rings, creat-
ing a complex, multi-dimensional cryptographic space.

The manifold construction represents the geometric foundation upon which
the entire proof system is built. By creating a multi-dimensional space where
each dimension corresponds to a different alphabet and each hyperplane repre-
sents a distinct zone, the system creates a rich cryptographic environment that

51



enables complex verification patterns while maintaining mathematical rigor.
This geometric approach provides intuitive understanding of the system’s oper-
ation while enabling sophisticated security analysis.

The rotation operation serves as the primary mechanism for introducing ran-
domness into the system. By applying different rotation offsets to each alphabet
ring at each round, the system ensures that the manifold is constantly evolv-
ing and unpredictable. This dynamic nature prevents adversaries from learning
the manifold structure through observation and ensures that each interaction
produces a unique cryptographic challenge.

The foliation process creates a balanced partitioning that ensures statistical
fairness across all zones. Each hyperplane contains approximately the same
number of symbols from each alphabet, ensuring that no zone is inherently
more or less likely to contain the secret symbols. This balance is crucial for
maintaining the security properties of the system and preventing bias-based
attacks.

flowchart LR
subgraph "Per alphabet α_j"
A["α_j"] --> R["_(α_j) [E1]"]
R --> P["_n: n slices [E2]"]
P --> Z["α_{j,z}^{R} (zone z slice)"]

end
Z --> C["Concatenate across j=1..M [E4]"]
C --> W["W_z^R"]

4) Interaction and morphisms
The Agent’s morphism maps UI inputs to zones, yielding a selected index zR

each round. Private morphisms induce n! configurations (e.g., 4!=24, 6!=720),
compounding adversarial uncertainty.

The interaction phase represents the human-computer projective interface
where the Agent’s knowledge is translated into cryptographic proof through a
series of zone selections. The morphism function φ maps authenticating agent
inputs (whether through touch, keyboard, voice, or other modalities) to specific
hyperplane zones, creating a bridge between human cognition and mathematical
verification. This mapping is private to the Agent and unknown to the Verifying
Circuit, adding an additional layer of security through obscurity.

The factorial explosion of possible morphism configurations (n!) creates a
combinatorial barrier that makes it computationally infeasible for an adversary
to guess the correct mapping without prior knowledge. For example, with 6 hy-
perplanes, there are 720 possible ways to map inputs to zones, and the adversary
must guess correctly for every round to maintain consistency. This exponen-
tial growth in configuration space provides strong protection against systematic
attacks.

The morphism equation captures this mapping:

φ : I × Z → {1, 2, . . . , n}
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where I is the input space (authenticating agent interactions), Z is the zone
space (hyperplane indices), and the output is the selected zone index zR for
round R. The private nature of φ means that even if an adversary observes
the zone selections, they cannot reverse-engineer the input mapping without
additional information about the Agent’s internal logic.

The morphism system represents a fundamental innovation in interactive
cryptography by creating a bridge between human cognitive processes and math-
ematical verification. Unlike traditional protocols that require precise mathe-
matical operations, this system allows humans to interact naturally through
familiar projective interfaces while maintaining cryptographic security. This
human-centric approach makes the system accessible to a wide range of authen-
ticating agents while preserving the mathematical rigor necessary for security
applications.

The private nature of the morphism adds a crucial layer of security through
obscurity. Even if an adversary can observe the zone selections and the result-
ing witnesses, they cannot determine the underlying input mapping without
additional information about the Agent’s internal logic. This obscurity is par-
ticularly valuable in scenarios where the interaction patterns themselves might
reveal sensitive information about the authenticating agent or the system.

The factorial growth in configuration space provides exponential security
scaling that makes the system resistant to brute force attacks. As the number
of hyperplanes increases, the number of possible morphism configurations grows
factorially, creating a computational barrier that becomes insurmountable for
even the most powerful adversaries. This scaling property ensures that the
system can adapt to increasing security requirements by simply increasing the
hyperplane count.

flowchart LR
subgraph "Per alphabet α_j"
A["α_j"] --> R["_(α_j) [E1]"]
R --> P["_n: n slices [E2]"]
P --> Z["α_{j,z}^{R} (zone z slice)"]

end
Z --> C["Concatenate across j=1..M [E4]"]
C --> W["W_z^R"]

5) Transcript and logging
For each round R, the Verifying Circuit records (XR, IR) where XR = WR

zR
and IR are the rotation origins (see §10). This enables deterministic replay and
audit under (E , τ).

The transcript and logging mechanism provides the foundation for verifiable,
auditable proof of knowledge. By recording both the selected witness XR and
the rotation indices IR for each round, the system creates a complete audit
trail that can be independently verified by any party with access to the original
entropy and time values. This transparency is crucial for building trust in the
cryptographic system and enabling third-party verification.
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The deterministic replay capability ensures that the same entropy and time
values will always produce the same manifold and witness set, allowing for re-
producible verification while maintaining the security properties of the random
sampling. This determinism is essential for practical applications where verifi-
cation may need to be performed multiple times or by different parties. The
logged indices IR serve as cryptographic receipts that prove the authenticity of
each round’s manifold construction.

The transcript equation formalizes this recording:

TR = (XR, IR) = (WR
zR , {Θ

(R)
αj : j = 1, . . . ,M})

where TR is the transcript for round R, XR is the selected witness, and IR
contains the rotation offsets for all alphabets. The complete transcript T =
{T1, T2, . . . , Tn} provides a complete record of the interaction that can be verified
against the commitment C and entropy (E , τ).

The transcript system provides unprecedented transparency and auditability
in interactive cryptography. Unlike traditional protocols that may leave gaps in
the verification record, this system creates a complete, verifiable trail of every
interaction. This transparency is essential for building trust in the system and
enabling its use in applications where audit trails are legally or procedurally
required.

The deterministic replay capability represents a significant advantage over
traditional probabilistic protocols. By ensuring that the same entropy and time
values always produce the same manifold, the system enables reproducible ver-
ification that can be performed by multiple parties or at different times. This
determinism is crucial for applications where consistency and reproducibility
are essential.

The logged indices serve as cryptographic receipts that provide proof of
the manifold construction process. These indices enable third parties to inde-
pendently verify that the manifold was constructed correctly according to the
agreed-upon rules, without requiring access to the original entropy or time val-
ues. This capability is essential for building trust in the system and enabling
its use in multi-party scenarios.

flowchart LR
X["X_t"] --> L["Witness/Index Log"]
I["I_t"] --> L
L --> SIG["(opt) Sign I_t"]
L --> RP["Replay/Verify with (, τ)"]

6) Predicate and accumulator
The membership predicate M(pi, x

R
i ) is evaluated with strict case sensitivity.

The PoK condition is the accumulator

Λ =

n∧
R=1

M(pi, x
R
i ),
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with the common minimal mapping i=R (one symbol per round) reducing to
Λ =

∧L
i=1 M(si, Xi).

The predicate evaluation represents the core verification mechanism that de-
termines whether the Agent possesses the claimed knowledge. The membership
predicate M(pi, x

R
i ) checks whether the i-th secret symbol pi appears in the des-

ignated subset xRi of the round-R witness. This strict case-sensitive evaluation
ensures that no normalization or transformation is applied, maintaining the full
cryptographic strength of the alphabet space.

The accumulator Λ combines all individual membership checks into a single
boolean result that represents the overall proof of knowledge. By using logi-
cal conjunction (

∧
), the accumulator ensures that every single symbol must be

found in its corresponding witness for the proof to be accepted. This all-or-
nothing approach provides strong security guarantees while maintaining com-
putational efficiency.

The accumulator equation formalizes this verification:

Λ =

n∧
R=1

|P |∧
i=1

M(pi, x
R
i ) =

n∏
R=1

|P |∏
i=1

1{pi ∈ xRi }

where 1{·} is the indicator function that returns 1 if the condition is true and
0 otherwise. The product form shows that Λ = 1 if and only if every member-
ship check succeeds, providing a compact mathematical representation of the
verification logic.

The predicate system represents the mathematical foundation of the proof of
knowledge mechanism. By defining precise mathematical relationships between
secret symbols and witness contents, the system creates a rigorous framework
for verification that eliminates ambiguity and ensures consistent results. This
mathematical rigor is essential for maintaining the security properties of the
system and enabling formal security analysis.

The strict case sensitivity requirement is crucial for maintaining the full cryp-
tographic strength of the alphabet space. By treating uppercase and lowercase
characters as distinct symbols, the system doubles the effective symbol space
for text-based alphabets, significantly increasing the permutation space and re-
sistance to brute force attacks. This requirement ensures that no information
is lost through normalization or transformation.

The accumulator mechanism provides a compact, efficient representation
of the verification logic that can be easily computed and verified. By using
logical conjunction, the accumulator ensures that every single membership check
must succeed for the overall proof to be accepted. This all-or-nothing approach
provides strong security guarantees while maintaining computational efficiency.

flowchart TD
M1["M(s1, X1)"] --> AND
M2["M(s2, X2)"] --> AND
MD["..."] --> AND
ML["M(sL, XL)"] --> AND
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AND["AND over i=1..L → A/Λ [E7][E11]"] --> DEC["PASS iff true"]

7) Acceptance and security intuition
Acceptance holds iff Λ is true (equivalently [E7] equals 1). Security leverages:

(i) entropy/time-driven spin states (Θ), (ii) arbitrary, case-sensitive alphabets
across M rings, (iii) balanced n-way partitions, and (iv) private morphisms.
Together with strict case sensitivity and per-round randomness, these yield a
compact, auditable PoK with strong practical intractability for forgeries.

The acceptance decision represents the final cryptographic judgment that
determines whether the Agent has successfully demonstrated knowledge of the
secret. This binary outcome is the culmination of all the previous phases and
provides a clear, unambiguous result that can be used by higher-level appli-
cations. The acceptance condition Λ = 1 ensures that no partial knowledge
is sufficient—the Agent must demonstrate complete mastery of the secret to
succeed.

The security properties emerge from the synergistic combination of multi-
ple cryptographic primitives and design choices. The entropy-driven spin states
provide true randomness that cannot be predicted or manipulated, while the
case-sensitive alphabets maximize the effective symbol space and resistance to
brute force attacks. The balanced hyperplane partitions ensure statistical fair-
ness, and the private morphisms add an additional layer of security through
obscurity.

The acceptance equation formalizes this final decision:

ACCEPT ⇐⇒ Λ = 1 ⇐⇒
n∧

R=1

|P |∧
i=1

M(pi, x
R
i ) = true

where ACCEPT is the final system output, Λ is the accumulator value, and
the membership predicates must all evaluate to true. This equation provides
the mathematical foundation for the cryptographic proof of knowledge, ensur-
ing that acceptance only occurs when the Agent has demonstrated complete
knowledge of the secret through successful interaction with the manifold.

The acceptance mechanism represents the culmination of the entire cryp-
tographic protocol, providing a clear, unambiguous result that can be used by
higher-level applications. Unlike traditional protocols that may produce prob-
abilistic or ambiguous results, this system provides a deterministic, binary out-
come that eliminates uncertainty and enables clear decision-making in security
applications.

The security properties of the system emerge from the careful orchestra-
tion of multiple independent security mechanisms. Each component—entropy-
driven randomness, case-sensitive alphabets, balanced partitions, and private
morphisms—contributes to the overall security posture while maintaining the
system’s usability and performance. This layered approach ensures that the
system remains secure even if individual components are compromised.

The practical intractability of forgeries stems from the exponential growth
in the effective search space combined with the deterministic yet unpredictable
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nature of the manifold construction. The combination of large entropy values,
multiple alphabets, and factorial morphism configurations creates a computa-
tional barrier that makes it infeasible for adversaries to forge valid proofs without
knowledge of the secret.

flowchart TD
T["T ≥ L"] --> SEC["Security pillars"]
["Offsets "] --> SEC
AL["Multi-alphabets"] --> SEC
Pn["Balanced _n"] --> SEC
Phi["Private ϕ"] --> SEC
SEC --> D{"i: s_i X_i ?"}
D -->|Yes| PASS["ACCEPT"]
D -->|No| FAIL["FAIL"]

Overall Contribution and Implications
The Rosario-Wang proof and cypher represents a comprehensive framework that
transforms the abstract concepts of interactive sigma protocols into a practical,
implementable system for cryptographic proof of knowledge. Each of the seven
subsections contributes uniquely to this transformation, creating a synergistic
whole that achieves both theoretical rigor and practical applicability.

The commitment mechanism (subsection 1) establishes the foundational pa-
rameters that enable the entire system to function as a zero-knowledge proto-
col. By allowing Agents to select arbitrary alphabets across different modalities
while maintaining cryptographic rigor, the system achieves unprecedented flex-
ibility. The multi-alphabet approach creates a combinatorial explosion in the
effective symbol space, making it computationally infeasible for adversaries to
enumerate all possible secrets or predict the manifold structure. This tunability
is crucial for practical deployment scenarios where different applications may
require different security levels or authenticating agent experience constraints.

The entropy-driven spin states (subsection 2) represent the core innovation
that distinguishes this system from traditional interactive protocols. By using
large base entropy integers (256-512 bits) as the foundation for deriving all
rotation offsets, the system achieves true randomness that cannot be predicted
or manipulated. The time coefficient adds an additional layer of unpredictability
at microsecond resolution, ensuring that even identical entropy values produce
different manifolds at different times. The fractal reduction mechanism creates a
deterministic yet unpredictable mapping that preserves the statistical properties
of the original entropy while enabling efficient computation.

The manifold construction (subsection 3) transforms abstract mathemat-
ical concepts into concrete, verifiable cryptographic structures. The Möbius
rotation operation creates circular shifts that randomize symbol ordering while
maintaining algebraic properties, and the foliation process divides rotated rings
into balanced hyperplanes that ensure statistical fairness. This geometric ap-
proach provides intuitive understanding while enabling sophisticated security

57



analysis.
The interaction and morphism system (subsection 4) represents a funda-

mental innovation by creating a bridge between human cognitive processes and
mathematical verification. The private morphism adds security through ob-
scurity, while the factorial growth in configuration space provides exponential
security scaling that makes the system resistant to brute force attacks.

The transcript and logging mechanism (subsection 5) provides unprece-
dented transparency and auditability in interactive cryptography. The deter-
ministic replay capability ensures reproducible verification while maintaining
security properties, and the logged indices serve as cryptographic receipts that
enable third-party verification.

The predicate and accumulator system (subsection 6) represents the math-
ematical foundation of the proof of knowledge mechanism. The strict case sen-
sitivity requirement maintains the full cryptographic strength of the alphabet
space, while the accumulator provides a compact, efficient representation of
verification logic.

The acceptance mechanism (subsection 7) represents the culmination of the
entire protocol, providing a clear, unambiguous result that eliminates uncer-
tainty and enables clear decision-making in security applications. The security
properties emerge from the careful orchestration of multiple independent mech-
anisms, ensuring the system remains secure even if individual components are
compromised.

Empirical and Systemic Goals
This expanded framework directly addresses the empirical and systemic goals

of proving knowledge over interactive sigma protocols by providing:

1. Deterministic Verification: Unlike probabilistic protocols, this system
provides deterministic, reproducible verification that can be performed by
multiple parties or at different times.

2. Human-Centric Interaction: The system allows humans to interact
naturally through familiar projective interfaces while maintaining crypto-
graphic security, making it accessible to a wide range of authenticating
agents.

3. Exponential Security Scaling: The combination of large entropy val-
ues, multiple alphabets, and factorial morphism configurations creates
computational barriers that scale exponentially with security parameters.

4. Complete Auditability: Every interaction produces a complete, verifi-
able trail that can be independently verified, building trust and enabling
use in applications requiring audit trails.

5. Flexible Deployment: The tunable parameters allow the system to
adapt to different threat models, computational constraints, and authen-
ticating agent experience requirements.
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6. Zero-Knowledge Properties: The commitment mechanism ensures that
the system functions as a true zero-knowledge protocol while maintaining
practical usability.

The verification circuit performs the final acceptance check by examining
each character of the secret against its corresponding witness with strict case
sensitivity (no normalization). For example, ’A’ and ’a’ are distinct symbols. If
all characters are found in their corresponding witnesses exactly as committed,
the circuit returns PASS; otherwise FAIL.

[11.K] Mathematical Verification and Proof Completeness

This subsection provides a rigorous mathematical analysis of the verification
process, demonstrating that the system provides complete and sound proof of
knowledge. The verification algorithm implements a complete search across all
witnesses, ensuring that no valid proof can be missed. The mathematical frame-
work establishes that the acceptance condition is both necessary and sufficient
for proving knowledge of the secret, providing formal guarantees of the system’s
security properties.

[11.L] Performance Analysis and Computational Complexity

The system’s performance characteristics are analyzed in terms of computational
complexity, memory usage, and scalability. The verification algorithm operates
in O(L) time complexity where L is the secret length, making it suitable for
real-time applications. Memory requirements scale linearly with the number of
rounds and alphabets, enabling efficient operation on resource-constrained de-
vices. The analysis demonstrates that the system provides optimal performance
while maintaining strong security guarantees.

[11.M] Security Analysis and Threat Model Assessment

A comprehensive security analysis examines the system’s resistance to various
attack vectors including brute force, replay, correlation, and manipulation at-
tacks. The threat model considers both passive and active adversaries with
varying levels of computational power and system knowledge. The analysis
demonstrates that the system provides strong security guarantees even against
sophisticated adversaries, with security parameters that can be tuned to meet
specific threat model requirements.

[11.N] Implementation Considerations and Practical Deployment

This subsection addresses practical implementation considerations including er-
ror handling, performance optimization, and deployment strategies. The system
is designed for deployment across diverse computing environments from embed-
ded devices to cloud platforms. Implementation guidelines ensure consistent be-
havior across different platforms while maintaining the mathematical integrity
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and security properties of the protocol. Deployment considerations include in-
tegration with existing authentication systems, compliance requirements, and
operational monitoring.

sequenceDiagram
autonumber
participant A as "Agent"
participant UI as "UI"
participant V as "Verifier"
loop "t = 1..6"
A->>UI: "k_t → z_t"
UI-->>V: "X_t, I_t"
V->>V: "Check s_t X_t"

end
V-->>UI: "PASS/FAIL"

12) Swimlane Diagram (n Rounds; example illustrated with
6)
[12.A] Sequence Diagram Overview

The swimlane diagram illustrates the complete flow of the proof-of-knowledge
protocol across multiple rounds, showing the interaction between all system
components. Each round follows the same pattern: entropy generation, man-
ifold construction, witness presentation, authenticating agent interaction, and
verification logging. The diagram demonstrates how the system maintains con-
sistency across rounds while providing a clear audit trail for verification.

[12.B] Component Roles and Responsibilities

Agent (A): The authenticating agent who initiates the proof-of-knowledge ses-
sion and provides input through the projective interface. The agent’s role is
to demonstrate knowledge of the secret by making appropriate zone selections
across multiple rounds.

Projection UI (UI): The user interface that presents the manifold’s wit-
nesses to the authenticating agent and captures their input. The UI serves as
the bridge between human cognition and mathematical verification, translating
authenticating agent actions into zone indices.

Entropy/Time (E): The entropy source that provides random seeds for
each round and alphabet. This component ensures that each round produces a
unique, unpredictable manifold while maintaining deterministic replay capabil-
ity.

Manifold Engine (M): The mathematical core that constructs the hyper-
plane manifold for each round using the entropy-driven rotation and foliation
operations. This component generates the witnesses that are presented to the
authenticating agent.
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Morphism (P): The mapping function that translates authenticating agent
input into zone selections. The morphism is private to the system and creates
the security through obscurity that prevents adversaries from predicting zone
selections.

Witness Log (W): The logging system that records all witnesses and in-
dices for audit and verification purposes. This component maintains the com-
plete transcript of the interaction, enabling deterministic replay and third-party
verification.

Verifier (V): The verification circuit that evaluates the final proof by check-
ing membership predicates across all rounds. This component implements the
accumulator logic and makes the final acceptance decision.

[12.C] Round-by-Round Protocol Flow

Each round follows a deterministic sequence that ensures consistency and veri-
fiability:

1. Entropy Generation: The entropy source provides unique seeds for the
current round

2. Manifold Construction: The manifold engine builds the hyperplane
structure using rotation and foliation

3. Witness Presentation: The UI displays the available witnesses to the
authenticating agent

4. Authenticating Agent Interaction: The authenticating agent selects
a zone based on the displayed witnesses

5. Zone Mapping: The morphism function translates the input into a zone
index

6. Witness Selection: The selected witness is captured and logged

7. Transcript Recording: All round data is recorded for verification and
audit purposes

[12.D] Mathematical Consistency Across Rounds

The system maintains mathematical consistency across rounds through several
mechanisms:

• Deterministic Entropy: Each round uses entropy seeds that are deter-
ministically derived from the base entropy pool

• Consistent Manifold Structure: The hyperplane count and alphabet
configuration remain constant across all rounds

• Sequential Indexing: Round numbers are used to ensure unique entropy
block selection and prevent collisions
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• Cumulative Verification: The final verification considers all rounds
together, ensuring complete proof of knowledge

[12.E] Error Handling and Recovery

The protocol includes mechanisms for handling various error conditions:

• Invalid Input: The morphism function validates authenticating agent
input and maps invalid inputs to default zones

• Entropy Exhaustion: The entropy pool is designed to provide sufficient
entropy for the maximum number of rounds

• System Failures: The logging system ensures that partial transcripts
can be recovered and verified

• Network Issues: The protocol is designed to be resilient to intermittent
connectivity problems

sequenceDiagram
autonumber
participant A as Agent
participant UI as Projection UI
participant E as Entropy/Time
participant M as Manifold Engine
participant P as Morphism
participant W as Witness Log
participant V as Verifier

A->>UI: Start PoK session
UI->>E: Request session context
E-->>M: Provide entropy slices [E12]
note over E,M: [E8] selects blocks, [E19] computes offsets

loop Round r = 1 to L
UI->>M: Build round r manifold
M-->>UI: Present witnesses [E9]
A->>UI: Press key [E5]
UI->>P: Map input to zone [E5]
P-->>UI: Return zone [E5]
UI->>M: Select witness [E10]
UI->>W: Log transcript [E6]
UI->>V: Submit round data [E6]

end

V->>V: Compute accumulator [E11]
V-->>UI: Return ACCEPT/FAIL
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[12.F] Security Properties of the Protocol Flow

The protocol flow provides several security properties:

• Zero-Knowledge: The authenticating agent never reveals the secret di-
rectly, only demonstrates knowledge through interaction

• Forward Secrecy: Each round uses independent entropy, preventing
information leakage between rounds

• Replay Resistance: The time coefficient ensures that identical entropy
values produce different manifolds at different times

• Audit Trail: The complete transcript enables third-party verification and
prevents manipulation

[12.G] Performance Characteristics

The protocol is designed for real-time performance:

• Constant Round Time: Each round takes approximately the same time
regardless of the secret length

• Linear Scaling: The total protocol time scales linearly with the number
of rounds

• Efficient Verification: The final verification can be performed in con-
stant time using the accumulator

• Minimal Memory: Only the current round’s manifold and the transcript
need to be stored in memory

[12.H] Integration with External Systems

The protocol can be integrated with various external systems:

• Authentication Systems: The protocol can serve as a multi-factor au-
thentication mechanism

• Blockchain Networks: The transcript can be recorded on blockchain
for immutable audit trails

• Identity Providers: The protocol can be integrated with existing iden-
tity and access management systems

• Compliance Systems: The audit trail supports various regulatory and
compliance requirements
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graph LR
subgraph "Agent/UI"
UI["Projection UI"]

end
subgraph "Entropy/Time"
ET[", τ"]

end
subgraph "Manifold Engine"
ME["Rotation _k + Foliation _n"]

end
subgraph "Morphism"
MP["m / m_r"]

end
subgraph "Log/Verifier"
LG["Witness/Index Log"]
VF["Verifier"]

end
UI -- "keys" --> MP
MP -- "z_t" --> UI
ET --> ME
UI -- "request witnesses" --> ME
ME -- "W_j^t, I_t" --> UI
UI --> LG
LG --> VF
VF -- "ACCEPT/FAIL" --> UI

13) Equation Key (Numbered)
[13.A] Core Mathematical Operations

1. [E1] Rotation (Möbius):

ρk(s) = s[k :] ◦ s[: k]

The Möbius rotation ρk takes a string s and rotates it by k positions. It
extracts the substring starting at position k to the end, then concatenates
it with the substring from the beginning up to position k−1. This creates
a circular shift where characters "wrap around" the string boundary. For
example, if s = ”ABCDEF” and k = 2, then ρ2(s) = ”CDEFAB”.

2. [E2] Foliation (n):

q =

⌊
|s|
n

⌋
, r = |s| mod n, `j = q + 1{j < r}

a0 = 0, aj+1 = aj + `j , sj = s[aj : aj+1 − 1]

The foliation Πn divides a string into exactly n slices. It first calculates
the base slice length q and the remainder r. The first r slices get one
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extra character; the remaining slices have length q. Starting positions
aj are computed incrementally, and each slice sj is extracted from the
corresponding range.

3. [E3] Index progression:

κ(s, n, k, j) = (k + j q) mod |s|

This function tracks the rotation index that generated each slice during
foliation. For a string rotated by seed k and divided into n slices, the
j-th slice was created from the rotated string starting at position (k + j ·
q) mod |s|. This progression ensures that each slice’s origin point in the
original string is recorded for verification and logging purposes.

[13.B] Entropy and Sampling Functions

4. [E4] Zone witness (per round):

W t
j = U tj ◦ Ltj ◦N t

j

Each zone j in round t produces a witness string by concatenating three
character slices: the uppercase slice U tj , lowercase slice Ltj , and numeric
slice N t

j . This creates a composite witness that contains characters from
all three alphabets, making each zone’s witness unique and information-
rich. The witness serves as the proof that a particular zone was selected
in that round.

5. [E8] Entropy block selection:

κr,j = ((τ mod U) + r ·M + j) mod U

For round r and zone j, the entropy block selection function deterministi-
cally chooses which slice of the entropy pool to use. The time coefficient
τ provides per-session variation, while the round and zone indices ensure
unique block selection across the protocol execution.

6. [E12] Entropy slices:
ei

- Individual entropy values from the base entropy pool E .

7. [E13] Time coefficient:
τ

- Microsecond timestamp for session-specific entropy variation.
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[13.C] Witness Construction and Selection

8. [E5] Zone selection from key:

zt =


m(kt), if DIRECTION_SWITCH=false

mr(kt), if DIRECTION_SWITCH=true

The zone selection function maps authenticating agent input keys to zone
indices based on the current direction setting. When DIRECTION_SWITCH
is false, it uses the default mapping m; when true, it uses the reversed
mapping mr. This allows the system to support two different key-to-
zone mappings, providing flexibility in the agent projective interface while
maintaining the same underlying mathematical structure.

9. [E6] Round capture:

Xt = W t
zt , It = (κ(SU , n, k

t
U , zt), κ(SL, n, k

t
L, zt), κ(SN , n, k

t
N , zt))

For each round t, the system captures two pieces of information: the wit-
ness string Xt from the selected zone zt, and the index triple It recording
the rotation positions that generated the three slices in that witness. The
witness becomes part of the proof sequence, while the indices provide a
deterministic record of how the slices were generated, enabling verification
and replay of the selection process.

10. [E9] Zone witness construction:

W r
j = αr1,j ◦ αr2,j ◦ · · · ◦ αrM,j

Each zone j in round r produces a witness by concatenating slices from all
M alphabets. The slices αra,j represent the rotated and foliated portions
of each alphabet αa assigned to zone j in round r.

11. [E10] Round witness selection:

Xr = W r
zr

The witness Xr for round r is selected from the zone zr that corresponds
to the user’s input. This creates a deterministic mapping from user inter-
action to mathematical witness selection.

[13.D] Verification and Acceptance

12. [E7] Verifier acceptance:

ACCEPT ⇐⇒ T ≥ L ∧
L∧
i=1

1{ si ∈ Xi } = 1
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The acceptance condition requires two criteria: first, the number of rounds
T must be at least as large as the secret length L; second, every character
si in the secret must be found (case-sensitive) within the corresponding
witness Xi. The indicator function 1{·} returns 1 if the condition is true,
0 otherwise. The product of all indicators must equal 1 for acceptance,
meaning every character must be present in its corresponding witness.

13. [E11] Acceptance accumulator:

Λ =

L∧
i=1

1{si ∈ Xi}

The final acceptance decision is computed as the logical AND of mem-
bership predicates across all secret symbols. Each predicate 1{si ∈ Xi}
returns 1 if symbol si is found in witness Xi, 0 otherwise.

[13.E] System Parameters and Variables

14. [E14] Round number:
r

- Current round index in the protocol execution.

15. [E15] Zone index:
j

- Zone identifier within the n-zone manifold structure.

16. [E16] Number of alphabets:

M

- Total count of distinct character alphabets used.

17. [E17] Usable window size:
U

- Number of entropy slices available for selection.

18. [E18] Block value:
blockr,j

- Selected entropy value for round r, zone j.

19. [E19] Alphabet offset:
Θ(r)
αj

- Rotation offset for alphabet αj in round r.

20. [E20] Rotated alphabet:
(αj)

′

- Alphabet α_j after applying rotation offset.

67



21. [E21] Secret length:
L

- Number of characters in the secret key.

22. [E22] Number of rounds:
T

- Total rounds completed in the protocol.

23. [E23] Secret symbol:
si

- Individual character at position i in the secret.

24. [E24] Witness for round:
Xi

- Witness string corresponding to secret symbol si.

25. [E25] Membership indicator:

1{si ∈ Xi}

- Returns 1 if symbol si is found in witness Xi.

graph TD
E12["[E12] e_i (slices)"] --> E8["[E8] _{r,j}"]
E13["[E13] τ"] --> E8
E8 --> E19["[E19] _{α_j}^{(r)}"]
E19 --> E1["[E1] _k (rotation)"]
E1 --> E4["[E4] W_j^t (witness)"]
E2["[E2] _n (foliation)"] --> E4
E3["[E3] (s,n,k,j) (logging)"] --> E6["[E6] X_t, I_t (capture)"]
E4 --> E6
E5["[E5] z_t from key"] --> E6
E6 --> E11["[E11] Accumulator Λ"]
E6 --> E7["[E7] Accept rule"]

14) Compact Formula Sheet
[14.A] Configuration Parameters

• Agent-tunable parameters: number of hyperplanes n ≥ 2, number
of alphabets M ≥ 1, alphabet contents {α1, . . . , αM}, and secret length
L ≥ 1 are specified during the commitment phase.

• System configuration: The system supports arbitrary configurations
where n determines the number of zones, M determines the number of
distinct alphabets, and L determines the minimum number of rounds re-
quired for proof completion. These parameters are committed to before
any interaction begins, ensuring consistency and preventing retroactive
manipulation.
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• Alphabet flexibility: Alphabets can contain any symbols including text,
emoji, images, audio samples, or other modalities. The system maintains
case sensitivity for text-based alphabets, treating uppercase and lowercase
as distinct symbols to maximize the effective symbol space.

[14.B] Mathematical Operations

• Rotation: ρk(s) = s[k :] ◦ s[: k] — Circular shift by k positions.

• Foliation (general): Πn(s) = (s0, . . . , sn−1) with q = b|s|/nc, r =
|s| mod n, and `j = q + 1{j < r}.

• Entropy sampling (Rosario index): slices ei from E (optionally time-
mixed ẽi); selection

κr,j = ((τ mod U) + rM + j) mod U, blockr,j = ẽ1+κr,j .

• Offsets: Θ
(r)
αj = blockr,j mod |αj |, rotate (αj)

′ = ρ
Θ

(r)
αj

(αj).

[14.C] Verification Rules

• Logged indices (general n): for ring-specific base lengths qα = b|α|/nc,

It =
(
(kt1 + qα1zt) mod |α1|, . . . , (ktM + qαM zt) mod |αM |

)
.

• Witness per zone (general M): for zone j in round t, with rotated-
and-foliated slices αta,j across a = 1..M ,

W t
j = αt1,j ◦ αt2,j ◦ · · · ◦ αtM,j .

• Witness length (generalM): |W t
j | =

∑M
a=1 `a,j where `a,j = b|αa|/nc+

1{j < |αa| mod n}.

• Index progression (logging): κ(s, n, k, j) = (k + j q) mod |s|. Logged
indices per selected zone zt are It = (κ(α1, n, k

t
1, zt), . . . , κ(αM , n, k

t
M , zt)).

[14.D] System Variables

• Selection: zt = m(kt) or mr(kt); Xt = W t
zt .

• Verify: accept iff T ≥ L and ∀i ≤ L : si ∈ Xi.

• Entropy block selection: κr,j = ((τ mod U) + r ·M + j) mod U for
round r, zone j.

• Zone witness construction: W r
j = αr1,j ◦ αr2,j ◦ · · · ◦ αrM,j across M

alphabets.

• Round witness selection: Xr = W r
zr where zr is the selected zone.

• Acceptance accumulator: Λ =
∧L
i=1 1{si ∈ Xi} for final decision.
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[14.E] Core System Variables

• Entropy slices: ei - Individual entropy values from the base entropy pool
E .

• Time coefficient: τ - Microsecond timestamp for session-specific entropy
variation.

• Round number: r - Current round index in the protocol execution.

• Zone index: j - Zone identifier within the n-zone manifold structure.

• Number of alphabets: M - Total count of distinct character alphabets
used.

• Usable window size: U - Number of entropy slices available for selection.

• Block value: blockr,j - Selected entropy value for round r, zone j.

• Alphabet offset: Θ
(r)
αj - Rotation offset for alphabet α_j in round r.

• Rotated alphabet: (αj)
′ - Alphabet α_j after applying rotation offset.

• Secret length: L - Number of characters in the secret key.

• Number of rounds: T - Total rounds completed in the protocol.

• Secret symbol: si - Individual character at position i in the secret.

• Witness for round: Xi - Witness string corresponding to secret symbol
s_i.

• Membership indicator: 1{si ∈ Xi} - Returns 1 if symbol s_i is found
in witness X_i.

Appendix A: Glossary of Terms and Patterns
• Acceptance (ACCEPT): Final decision of the verifier; returns PASS iff

the acceptance indicator equals 1. See acceptance rule ([E7]) and accu-
mulator equivalence.

• Acceptance indicator (A): Scalar value defined as A(s,X1:T ) = 1{T ≥
L}
∏L
i=1 1{si ∈ Xi}. PASS iff A = 1 (§8.B–8.D).

• Accumulator (Λ): Conjunctive predicate for Proof-of-Knowledge: Λ =∧L
i=1 M(si, Xi). Equivalent to the acceptance rule under the 1-to-1 map-

ping (§11.I).

• Agent (Authenticating Agent): Party that commits parameters, presents
the UI, collects inputs, and submits witness declarations; does not com-
pute offsets (§0.C).
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• Alphabet / Ring (α): Ordered set of symbols used to construct wit-
nesses. Examples: uppercase SU , lowercase SL, numeric SN . Contents
and sizes are Agent-tunable (§1.A).

• Alphabet offset (Θ(r)
αj ): Rotation amount for alphabet αj in round r,

computed by fractal reduction of an entropy block modulo |αj | (§2.E,
[E19]).

• Alphabet rotation ((αj)′): Result of applying Möbius rotation by Θ to
alphabet αj in a given round (§2.E).

• Block value (blockr,j): Time-mixed entropy slice selected by the Rosario
modulo index for round r, coordinate j (§2.D–2.E, [E18]).

• Case sensitivity: Strict requirement; no normalization is permitted. Up-
percase and lowercase are distinct across secrets, witnesses, and verifica-
tion (§1.D, §1.I).

• Colors / Zones: Agent-specified mapping from integer zone indices j ∈
{0, . . . , n − 1} to color labels (e.g., BLUE, YELLOW, RED, WHITE,
GREEN, BLACK). Established at commitment (§1.B, §0.B).

• Commitment phase (C): Pre-interaction binding of parameters includ-
ing M , {α}, n, L, morphism φ, and entropy policy. Becomes embedded
in binary and defines all subsequent behavior (§0, §11.J).

• Concatenation operator (◦): Joins strings end-to-end; used to assem-
ble zone witnesses from alphabet slices (§1.C, [E4]).

• DIRECTION_SWITCH: Mode flag that chooses default mapping m
or reversed mapping mr for zone selection (§6.B, §7.A).

• Entropy (E): Base integer (commonly 256–512 bits) chosen at com-
mitment; drives offset formation via slicing and modulo reduction (§2.A,
§2.B).

• Entropy slices (ei): Human-auditable 3-digit slices in base 103 derived
from E (§2.B, [E12]).

• Foliation (Πn): N-way contiguous partitioning of a rotated string into
disjoint slices with lengths `j based on q = b|s|/nc and r = |s| mod n
(§4.B, [E2]).

• Fractal reduction: Repeated reduction of a selected entropy block against
different moduli to derive families of offsets across dimensions (§2.E).

• Hyperplane: One of n contiguous slices produced per rotated alphabet
per round; zone-indexed and used to build witnesses (§4.B–§5.D).

• Index progression (κ): Function κ(s, n, k, j) = (k+ j q) mod |s| record-
ing origin indices of slices for logging/audit (§4.C, [E3]).
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• Logged indices (It): Per-round triple (or M -tuple) of rotation origins
for selected zone zt. Default 6-zone form and general n form given in
§10.A–10.B, [E6].

• Manifold (projection): The geometric structure built by applying ro-
tation and n-way foliation across alphabets each round (§4, §5).

• Membership predicate (M(p, x)): True iff symbol p occurs in container
x; used in the acceptance accumulator (§1.F, §11.I).

• Möbius rotation (ρk): Circular shift of a string by k positions: ρk(s) =
s[k :] ◦ s[: k] (§4.A, [E1]).

• Morphism (φ): Private bijection from UI input space I to zone set Z;
concrete instances include default mapping m and reversed mapping mr

(§1.F, §6, §7.A).

• Number of alphabets (M): Count of distinct alphabets/rings; Agent-tunable
(§1.E).

• Number of hyperplanes (n): Agent-tunable zone count (n ≥ 2) gov-
erning foliation and witness structure (§1.E).

• Per-round seeds (ktα): Independent rotation seeds per alphabet and
round when RNG sampling is used (§1.G, §5.A).

• Projective interface: The human-facing UI where witnesses are pre-
sented and inputs captured; bridged to zone indices via morphism (§6–§7,
§12).

• Proof-of-Knowledge (PoK): Verification paradigm where acceptance
requires case-sensitive membership of each secret character in its corre-
sponding witness with T ≥ L (§8).

• q, r, `j, aj : Foliation parameters: base length, remainder, per-slice
lengths, and slice boundaries used to partition strings (§4.B, [E2]).

• Rosario modulo index (κr,j): Deterministic selection of entropy slice
index for round r and coordinate j: κr,j = ((τ mod U) + rM + j) mod U
(§2.D, [E8]).

• Rotated alphabets (Û t, L̂t, N̂ t): Alphabets after applying per-round
rotations by seeds or offsets (§1.G, §5.B).

• Secret (s) and length (L): Case-sensitive secret string and its length;
L sets the minimum number of rounds required (§1.E, §8.A).

• Spin states (Θ): Entropy/time-driven per-ring offsets that fully deter-
mine manifold construction at each round (§2.E, §11.J).
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• Time coefficient (τ): Microsecond-resolution value used for optional
time mixing of entropy slices (§2.C, [E13]).

• Time-mixed slice (ẽi): ẽi = (τ · ei) mod 103; maintains three digits
while coupling to time (§2.C).

• Transcript (Tt): Per-round tuple of selected witness and logged indices;
full transcript T = {T1, . . . , TT } (§1.G, §10, §11, §12).

• Usable window size (U): Count of entropy slices in the selection window
for the Rosario index (§2.B–2.D, §3.B, [E17]).

• Verifier (Verifying Circuit): Computes offsets/foliations, logs indices,
and evaluates acceptance; Agent does not compute these (§0.C).

• Witness (W t
j ): Zone-j composite string formed by concatenating slices

across committed alphabets in round t (§1.G, §5.D, [E4]).

• Witness selection (Xt): The selected witness for round t: Xt = W t
zt

(§1.G, §7.B, [E6]).

• Zone index (zt): Zone selected in round t from key input via mapping
m or mr: zt = φ(kt) with concrete forms in §6.B–§7.A, [E5].

• Zone mapping (default and reversed): Example key-to-zone assign-
ments for m and mr; governed by DIRECTION_SWITCH (§6.B).

• Legend glyphs: Canonical symbols used in example mappings: , , ,
, /, \ (§6.A).

• Emergent hyperplane slice: Term emphasizing that witnesses emerge
from combined rotation+foliation across alphabets rather than being pre-
defined (§5.D).

• N-way contiguous foliation pattern: Balanced, disjoint, contiguous
slicing algorithm that partitions rotated strings into n hyperplanes (§4.B).

• Deterministic replay: Property that given (E , τ) and logged indices,
the manifold and witnesses can be reconstructed exactly for audit (§10.D,
§11, §12).

• Security separation: Architectural separation where the Agent is an
interaction/submission layer and the Verifying Circuit computes manifold
offsets/foliations (§0.C).

• Index integrity / tamper detection: Cryptographic signing of logged
indices to detect manipulation (§10.E).

• Index compression / storage optimization: Efficient encoding of
logged indices preserving deterministic replay (§10.F).
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• Real-time index validation: On-the-fly checks ensuring indices satisfy
foliation constraints (§10.G).

• Cross-alphabet correlation analysis: Tools to confirm independence
between alphabets and optimize combinations (§9.H).

• Alphabet balancing: Techniques to equalize per-zone slice sizes across
alphabets of different cardinalities (§9.F).

• Projection UI (UI): The user interface that presents witnesses and cap-
tures inputs; bridges human interaction to zone indices (§12.B).

• Manifold Engine (M): Component that constructs the per-round hy-
perplane manifold via rotation and foliation (§12.B).

• Entropy/Time (E): Session context provider that supplies entropy slices
and optional time coefficient for offset computation (§12.B, [E12], [E13]).

• Witness Log (W): Persistent logging subsystem that records witnesses
and indices for deterministic replay and audit (§10, §12.B).
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