ENI6GMA: A Peer-to-Peer Proof-of-Knowledge
Ledger and Bank-Grade Stablecoin E6G
(Eni6ma Gold)

Author
Dylan Rosario ~ Founder Rosario Cybernetics Research Group (Rosario-Wang
Proof)
research@eni6ma.co
www.enibma.com

Abstract

We introduce ENI6IMA,, a peer-to-peer electronic cash and settlement system
that replaces proof-of-work /stake with Proof-of-Knowledge (PoK) grounded
in the Rosario—~Wang Proof (RWP). Instead of expending energy or lock-
ing capital, each spend is authorized by an ephemeral witness tied to fresh
entropy and the exact transaction context, and verified publicly with fast sym-
metric checks. Blocks are timestamped by capsule commitments and chained
in a compact, threshold-signed accumulator, yielding seconds-class finality,
constant-time input verification, strong replay resistance, and a clean, auditable
security budget. ENI6GMA further specifies ENI6MA-G, a 1-gram-of-gold
per token stablecoin with per-window, RWP-attested reserve proofs, enabling
bank-grade issuance and redemption without long-lived private keys at rest or
PoW externalities.

At the heart of authorization is a one-time witness computed by a sealed,
symmetric private morphism M shared by prover and verifier (compiled
“twins”). Fresh session entropy z, the canonical block/window time T, and
the public transaction context ¢ (referenced UTXOs, amounts, scripts, network
ID, policy tags) are mapped to a transient orientation:

W = fM(xaTaQ)

“W equals f sub M of x, T, and q.”
Here faq is a composition of domain-separated hashes and PRFs parameterized
by M; W never leaves the device and is unrecoverable out of window. Ephemer-

mailto:research@eni6ma.co
http://www.eni6ma.com

ality collapses the attack surface associated with static signing keys: there are
no reusable private keys to phish, leak, or compel.

Public verification reduces to fixed-width XOR equalities over a deterministic
probe set derived from (g, T, sT), where st is the window’s randomness beacon.
The transcript 7 carries masked responses p; that cancel only if the spender
knows the correct W:

h
A = /\ (XOR(p;, pi) = 0).

“Lambda equals the logical AND, for i from one to h, of p sub i exclusive-or
rho sub i equals zero.”
All symbols are public at verification time: p; are challenges, p; are responses,
and h is the probe count. Acceptance is strictly conjunctive with policy:

ACCEPT <= A =1 A PolicyOK(q).

“Accept if and only if Lambda equals one and Policy-O-K of q is true.”
Thus, soundness (ephemeral knowledge) and governance (jurisdiction, KYC
tags, caps) are cleanly separated yet jointly enforced.

Blocks bind time, randomness, and policy with capsule commitments and
roll up content under a single accumulator. The header’s environment capsule

com;, = H(TAG[CAP] | T} || H(TAG[SEED] || s) || aux;)

“com sub t equals hash of tag cap concatenated with T sub t, concatenated
with hash of tag seed concatenated with s sub t, concatenated with aux sub t.”
commits the canonical time T}, the beacon seed s;, and auxiliary flags aux;.
Content and policy are chained via

A; = H(TAG[ACC] || A;—1 || com || txh, || pol,),

“A sub t equals hash of tag A-C-C concatenated with A sub t minus one,
concatenated with com sub t, concatenated with t-x-h sub t, concatenated with
pol sub t.”
where A;_1 is the prior accumulator, txh; summarizes the included transcripts,
and pol, is the enforceable rule word. A rotating beacon committee signs A;
with a threshold signature, certifying time/randomness anchoring and making
fork choice trivial: extend the longest valid, signed accumulator chain. Be-
cause verification is hash/XOR plus one header signature, SPV clients achieve
full-node assurances for specific payments from headers and a single
Merkle branch.

Our security model replaces hash-power or stake-economic assumptions with
two auditable premises: entropy freshness and threshold honesty. Single-
input forgery for any PPT adversary without M is negligible in the security
parameter \; union bounds scale to many concurrent attempts with linear
(and budgetable) risk. Replay and precomputation fail because 7 binds to

(z,T,q) and probes recompute from (7', s, q). The hot path is post-quantum
friendly—hashes, PRFs, XORs—while the committee’s threshold signature is
modular and upgradable to lattice or hash-based PQC without altering block
structure or SPV flow. Crucially, there are no private keys at rest for spends
or disclosures.

We operationalize a bank-grade stablecoin, ENI6MA-G, with one token
per gram of vaulted gold and per-window reserve proofs. Each custodian
publishes a reserve attestation capsule

res;, = H(TAG[RES] || SKU || mass, || vaultID || audit_ref),

“res sub t equals hash of tag R-E-S concatenated with S-K-U, concatenated
with mass sub t, concatenated with vault I-D, concatenated with audit refer-
ence.”
alongside an RWP transcript 7;°° proving live control at time 7;. These capsules
are bound into A;, turning solvency into a machine-checkable inequality
from headers alone. The “gram code” (1 g per token) provides a neutral unit
for cross-currency valuation using public gold prices, enabling predictable FX
routing and transparent treasury operations without oracle cartels or signature-
key custodianship.

Empirically, ENIGMA achieves seconds-class finality (time-window pac-
ing, pipeline threshold signatures), O(1) input verification cost (dominated by
hash/XOR), compact headers for fast propagation, and first-class SPV on
mobile. Economically, security is priced by explicit, predictable fees (band-
width and block space), not external energy burn; committee service fees are
small and policy-regulated; stablecoin reserves can even subsidize user fees via
attestation-tied rebates. Privacy is practical by construction—pseudonymous
scripts, short-lived transcripts, and selective disclosure proofs—while compli-
ance is objective and replayable via pol,.

In sum, ENI6MA generalizes Nakamoto’s insight—public, timestamped
history—by replacing work with knowledge as the scarce resource. The result
is a ledger that is faster, cheaper, and cleaner; preserves decentralization where
it matters (anyone can verify, anyone can transact); and elevates stability to
a cryptographically auditable property through per-window reserve proofs
for a 1-gram-backed instrument that banks can operate today.

1. Introduction

The past decade proved that public ledgers can coordinate value transfer with-
out central custody, yet mainstream commerce still leans on intermediaries to
prevent double-spending and resolve disputes. This trust-based posture exports
costs—chargebacks, data hoarding, compliance duplication—and imports pri-
vacy leakage as a feature, not a bug. Bitcoin’s proof-of-work (PoW) reframed
the problem: probabilistic finality through energy expenditure and open partic-
ipation. But its strengths carry structural trade-offs: high latency tied to block

discovery variance, fee pressure from limited throughput, and a security budget
that is literally burned.

ENI6MA takes a different path: it replaces work with knowledge. Each
spend is authorized by a one-time, time-keyed ephemeral witness derived
from fresh entropy and the exact transaction context, and verified publicly with
fast, symmetric checks. Nothing reusable is exposed on chain; there are no
private keys at rest to steal or coerce. The result is finality measured in
seconds, a verification cost that is constant per input, and a security budget
you can reason about with parameters rather than hash-rate economics.

At the center is the Rosario—Wang Proof (RWP), a Proof-of-Knowledge
primitive that binds authorization to the tuple (session entropy, canonical time,
public context). The prover’s device and validator share a sealed, symmetric
morphism compiled from the same binary; it projects those inputs into a private
manifold where membership can be checked through fixed-width XOR equalities.
Because the witness is event-local and never reappears, transcripts cannot be
replayed, malleated, or correlated across time.

Time itself is a first-class object. Blocks are paced by short windows (e.g.,
one second) rather than mining races. Each window publishes a capsule com-
mitment that binds the canonical timestamp, an unbiased seed from a rotating
beacon committee, and the active policy word. Transactions included in that
window are summarized, and everything—time, randomness, content, policy—is
rolled into a single accumulator value that the committee threshold-signs. Fork
choice becomes deterministic: extend the longest valid chain of signed ac-
cumulators.

This structure compresses verifiers. A full node re-derives the public context
for each input and runs a handful of XOR checks. A light client follows only
headers and, for a specific payment, requests one Merkle branch plus the tran-
script, verifying locally with the same symmetric code path. In other words,
SPV is not a second-class citizen; it is the default way ordinary devices achieve
full-node assurances for the transactions they care about.

Privacy follows from non-reusability. Scripts are pseudonymous and rotate
by default; the one-time transcript reveals no standing key. Linkage attacks are
pushed back to the visible context (amounts, timing, change patterns), which
wallets can shape with standard coin-selection policies. Where jurisdictions
require disclosure, ENI6GMA supports selective proofs anchored in headers: a
payer can reveal exactly one inclusion fact without exposing unrelated history.

Governance is explicit and separate from soundness. The cryptographic core
answers “is this spend authorized for this time and context?” while the policy
word answers “is this spend permitted under current rules?” (jurisdiction bits,
KYC tags, allow/deny lists, fee schedules, activation heights). Because policy
is committed in the accumulator, enforcement is objective and replayable: any
reviewer can re-validate decisions offline and reach the same outcome as the
network did online.

Security assumptions shift from “honest majority of energy or stake” to two
auditable premises: entropy freshness and a threshold-honest beacon com-
mittee. Both are measurable on chain—randomness proofs and signing partici-

pation—and both have direct mitigations: operator diversity, rotation, slashing,
and conservative confirmation depths for high-value flows. The cryptographic
hot path is hash/PRF/XOR only, making the system post-quantum friendly
with a modular upgrade for the committee threshold signature.

Economic incentives are simple and legible. There is no block subsidy and
no hardware race. Fees price bandwidth and block space; the beacon committee
earns a small, policy-regulated service fee when it delivers seeds and signatures
on time; and in the stablecoin context custodians can rebate user fees when they
publish timely reserve capsules. Because verification cost is tiny and predictable,
pricing maps closely to real resource consumption rather than to external energy
markets.

Persistence is scalable by design. Blocks commit a Merkle root for all
transcripts so nodes can safely prune bodies after a small, explicit finality
depth while retaining headers, roots, and signatures. Full nodes maintain only
the compact UTXO set and recent windows; light clients keep just headers.
Archivists can store old transcripts off-chain without trust games: a later inclu-
sion claim is either verified against the preserved root or rejected.

On top of the cash rail, ENIGMA specifies ENIGMA-G, a bank-grade sta-
blecoin where one token equals one gram of vaulted, good-delivery gold. Cus-
todians publish reserve capsules every window—SKU, mass, vault ID, audit
reference—attested with RWP and bound into the accumulator. Solvency be-
comes a machine-checkable inequality from headers alone, not a quarterly PDF.
The “gram code” then serves as a neutral unit for cross-currency settlement via
public gold prices, giving banks transparent, programmatic FX without oracle
cartels.

Operationally, institutions interact with three moving parts: code identity
(the sealed morphism), entropy quality (local plus beacon), and header sig-
natures (committee threshold). There are no long-lived issuer keys to escrow,
rotate, or leak. Reconciliation shrinks to header checks and reserve-capsule diffs;
audits become replay exercises over public data; incident response is parame-
terized in policy instead of improvised out of band.

Comparatively, ENIGMA preserves the decentralization that matters—anyone
can verify; anyone can transact—while removing the resource asymmetries that
encourage centralization in PoW (energy markets) or PoS (capital rents and
complex liveness assumptions). Latency drops to human-friendly seconds, fees
track bytes not joules, and the privacy surface improves because no durable
identities anchor analysis.

None of this dismisses Nakamoto’s insight; it generalizes it. Bitcoin taught
the world that a public, timestamped history can resolve double-spends in
an open network. ENI6MA keeps the public history and tightens the times-
tamps—then swaps the scarce resource: knowledge in the right moment and
context instead of work. That swap unlocks faster settlement, stronger privacy,
clearer audits, and a stablecoin whose reserves are visible each block.

What follows formalizes the RWP construction, the capsule and accumulator
machinery, the network protocol and fork rule, the incentive model, and the
reserve-attestation flow for ENIGMA-G. We present parameter choices, security

bounds under standard assumptions, and migration notes for post-quantum
committees. The aim is practical: a ledger simple enough to verify on a phone,
strong enough to settle institutional flows, and transparent enough that anyone
can replay the rules from headers alone.

2. Transactions

UTXO model with RWP transcripts

In the ENI6GMA ledger, value is tracked as discrete unspent transaction outputs
(UTXOs). A transaction selects one or more UTXOs as inputs and produces
a new set of UTXOs as outputs, preserving conservation of value. The dis-
tinctive departure from signature-based systems is that each input embeds an
RWP transcript 7 rather than a reusable public-key signature. The transcript
certifies that the spender possessed the correct, time-keyed knowledge at the
precise moment and for the precise context of this spend, without exposing a
static credential that could be harvested or correlated. This yields strong replay
resistance (the same transcript is invalid outside its time window or context)
and collapses the attack surface associated with key storage, recovery seeds, and
cross-protocol key reuse. From a validation standpoint, nodes treat 7 as a self-
contained proof object: mempools verify 7 along with standard structural and
value checks before forwarding, and block producers re-verify 7 upon inclusion,
achieving constant-time verification per input with only symmetric operations.

Sealed symmetric private morphism M and session binding
The prover’s device and the network verifier share a sealed, symmetric private
morphism M compiled from the same binary image (“twins”). M should be
viewed as a private map: a compact, stateless program that deterministically
projects fresh entropy and transaction context into a manifold where member-
ship tests are efficient to verify yet infeasible to counterfeit without the binary.
There are no long-lived keys to manage; security reduces to code identity and
runtime freshness. Practical deployments harden M with binary self-checksums,
control-flow integrity, anti-tamper markers, and offline verification modes to de-
tect modification. Because M is symmetric and sealed, the attack model is
shifted from “protect a secret scalar forever” to “protect code identity and en-
tropy freshness at the time of use,” which is operationally tractable in embedded,
mobile, and server environments with standard attestation and measured-boot
stacks.
Entropy, timestamp, and context ¢

Each session samples a high-entropy nonce x, binds it to a wall-clock timestamp
T, and folds in a context tuple g. The context canonically includes the referenced
UTXO identifiers, amounts, recipient locking script template, chain/network
identifiers, and optional policy tags (e.g., jurisdiction, asset type). Domain-
separation tags and fixed-width encodings prevent structural ambiguities. This
binding thwarts precomputation (an adversary cannot guess z), forces freshness
(the transcript is only valid near T'), and guarantees non-malleability with re-

spect to the economic meaning of the spend (altering amounts, outputs, or chain
flips the context and invalidates the proof). Because ¢ is public and determin-
istic from the transaction body, all validators derive the same ¢ and therefore
run precisely the same checks.

Ephemeral witness definition and pipeline

W = fM(x’T7 q)'

“W equals f sub M of x, T, and q.”
The function fas is a composition of symmetric primitives parameterized by
M: a domain-separated hash of (z,T,q) feeds a pseudo-random function cas-
cade and a small set of projection maps. The result W is an orientation in a
private symbolic manifold that is deterministic for the tuple (z, T, ¢) yet compu-
tationally indistinguishable from random to anyone without M. Intuitively, W
is the “one-time secret” for this spend: it never leaves the device, is not stored
at rest, and cannot be recomputed after the time window without the live en-
tropy and code identity. Because faq relies only on symmetric operations (hash,
XOR, PRF), the construction is post-quantum friendly and fast on commodity
hardware.

Transcript construction and public verifiability
The prover derives a transcript 7 = Transcribe(W, ¢) that encodes challenge-
response material allowing third parties to verify membership of W in the cor-
rect equivalence class for context ¢ without revealing W itself. Concretely, the
verifier prepares h designated probes {p;} deterministically from ¢ and block-
local beacons; the transcript carries masked responses {p;} derived from W. The
check reduces to a constant-time XOR equation per probe, avoiding group arith-
metic, pairings, or large finite-field operations. The transcript is non-linkable
beyond its explicit context because the masking depends on fresh entropy and
T, and it is non-transferable because replay outside the window fails the recom-
puted probes.

Membership XOR test and security parameters

h
A =)\ (XOR(pi, pi) =0).
i=1
“Lambda equals the logical AND, for i from one to h, of the statement: p
sub i exclusive-or rho sub i equals zero.”
Each equality acts as a small, independent predicate that a forger cannot satisfy
better than random guessing when W is unknown. By setting the per-probe
hardness (e.g., k effective bits) and the probe count h, the false-accept prob-
ability contracts as 27%". Because the probes are derived from public context
and time-beacon material, all honest verifiers arrive at the same {p;}; because
p; are tied to W, only a holder of the correct ephemeral witness can cause the
XORs to cancel. This yields an O(h) verifier with tiny constant factors, making
full-node and light-client validation equally practical at high throughput.
Acceptance rule and policy layer

ACCEPT <= A =1 A PolicyOK(q).

“Accept if and only if Lambda equals one and Policy-OK of q is true.”
Validation is intentionally factored into cryptographic soundness and explicit
policy. The A test certifies “this spend was authorized by live knowledge at
the right time for this context,” while PolicyOK(q) enforces non-cryptographic
constraints such as asset-class rules, AML/KYC flags, jurisdictional whitelists,
supply ceilings, and script versioning. Separating these layers preserves the
minimality of the cryptographic core and allows chains, subnets, or institutions
to evolve policy without touching M or fas. In mempools, transactions that
fail either branch are dropped; in blocks, any failure invalidates the containing
input and causes the block to be rejected.

Outputs, scripts, and composition
Outputs retain the familiar “locking script + amount” pattern. A recipient can
require future spenders to present an RWP transcript satisfying a particular pol-
icy tag, combine RWP with multi-party conditions (e.g., threshold RWP across
devices or cosigners), or embed time locks and covenants that constrain how
descendants may spend the value. Change outputs are created exactly as in
UTXO systems, enabling efficient coin selection and consolidation. Because the
spending condition is a predicate over 7 and g rather than a reusable public key,
script templates naturally support privacy-preserving address rotation and pol-
icy upgrades by template hash, while remaining friendly to light clients through
compact Merkle proofs and constant-time transcript verification.

3. Timestamp Server (Capsule Commitments)

com; = H(TAG[CAP] || T} || H(TAG[SEED] | s¢) || aux;)

“com sub t equals hash of tag cap concatenated with T sub t, concatenated
with hash of tag seed concatenated with s sub t, concatenated with aux sub t.”

The capsule commitment com; is the block’s compact, tamper-evident sum-
mary of time and environment. Here, H(-) is a collision-resistant hash (e.g.,
SHA-3 or BLAKE3); || denotes an unambiguous, length-delimited concate-
nation; and TAG[CAP] is a domain-separation constant that prevents cross-
protocol collisions. T} is the canonical block time for interval ¢, encoded in a
fixed width (e.g., 64-bit little-endian UNIX milliseconds) to eliminate parsing
ambiguity. The inner hash H(TAG[SEED] || s;) binds a committee-derived seed
s¢ while separating the seed’s domain from other hashed fields. aux; is a struc-
tured policy word, flags and parameters that contextualize the block, such as
network ID, ruleset version, and window length.

The inclusion of T} makes the commitment a timestamp in the cryptographic
sense: once com; is published, any later attempt to claim a different time for
the same block breaks preimage resistance. This anchors RWP transcripts to

a specific temporal window. Because RWP witnesses are ephemeral and time-
keyed, binding time directly into com; ensures that transcripts verified under
this header cannot be replayed across windows, and that validators converge on
the same notion of “now” for inclusion and finality.

The seed s; is the block’s entropy anchor. Practically, s; is produced by a ro-
tating beacon committee using an unbiased protocol (e.g., commit-reveal, VRF
aggregation, or drand-style randomness beacons). Hashing s; under TAG[SEED]
prevents “seed substitution” attacks and ensures uniform mixing before it feeds
downstream derivations, such as transcript probes and mempool selection ran-
domness. Because RWP proofs depend on fresh entropy, an unpredictable s;
denies adversaries the ability to precompute transcripts for a future block con-
text.

The policy word aux; gives the ledger a clean separation between crypto-
graphic soundness and governance. It can carry bitfields like AUX.VER (con-
sensus ruleset version), AUX.DELTA (target window length), AUX.NET (net-
work/chain ID), or toggles for experimental features. The cryptographic bind-
ing of aux; inside com; means any policy transition is immutably recorded and
inheres in the block’s identity; clients that do not recognize a new policy version
will deterministically reject the block.

Domain separation via TAG[CAP] and TAG[SEED] is critical. Without tags,
a malicious encoder could craft different tuples that collide after concatenation
(“type confusion”). Tags ensure that even if two concatenations accidentally
share byte patterns, they cannot be interpreted as belonging to another hash’s
domain. This property underwrites safe composability: the same hash function
H is reused across the system without risking cross-component collision games.

Security of com, is governed by standard hash properties. Collision resistance
prevents an attacker from finding two different quadruples (7%, s;,aux;) that
yield the same com;; second-preimage resistance prevents altering a previously
published block’s time or policy without detection; preimage resistance prevents
reconstructing (T3, s¢,aux;) from com; alone, which is useful if aux; contains
commitment-style subfields revealed later. Because RWP relies on symmetric
operations, choosing a modern H also maintains a post-quantum posture.

Operationally, com; unifies consensus pacing and anti-grinding. Pacing comes
from T; and windowing rules: producers can only assemble blocks whose times-
tamps lie within the permitted drift, and validators enforce it. Anti-grinding
comes from s;: block proposers cannot grind many candidate headers to game
downstream selection logic because the unpredictable seed is injected after
commit-and-sign by the beacon committee. This design removes the economic
incentives that, in PoW systems, push miners to expend energy searching for
“lucky” headers.

From an implementation viewpoint, com; is a small, fixed-size digest that
lives in the block header, travels well on the wire, and is simple to reconstruct
by any validator. Clients that operate in SPV mode only need to fetch and hash
these few fields to track time and policy transitions, while full nodes additionally
use comy as input to derive probe sets for RWP transcript checks, ensuring every
validator recomputes the exact same verification challenges.

The capsule abstraction composes cleanly with future extensions. If later
epochs introduce per-block auxiliary commitments, like reserve attestations for
a stablecoin issuer, data-availability roots, or rollup summaries, those can be
nested under aux; as sub-commitments whose reveals occur over a bounded
horizon. The outer H(-) keeps the header constant-size and verifiable with the
same code paths, preserving the ledger’s simplicity and throughput character-
istics.

txhy = H(TAG[TXH]|| 7 || -+ || 7k)

“t-x-h sub t equals hash of tag T-X-H concatenated with tau one through
tau K.”

The transaction hash txh; is the block’s content fingerprint for RWP tran-
scripts. The values 7, ..., Tk are the validated, ordered RWP transcripts from
the mempool selected for inclusion in block ¢, and K is the count of included
transactions. TAG[TXH] is a domain-separation tag for transaction aggrega-
tion. This construction binds the exact multiset (indeed the exact sequence, if
the serialization is order-sensitive) of transcripts to the block, so any post-hoc
alteration of content breaks the hash and is rejected by validators.

The simplest aggregation is a straight, length-delimited concatenation of 7;
byte strings under a domain tag. This gives excellent performance and minimal
overhead. In deployments that require inclusion proofs for light clients, txh;
can be defined as the Merkle root of {7;} with TAG[TXH] baked into the leaf
hash; the rest of the header and accumulator math remains unchanged. The
important property is that every validator derives the same txh; from the same
ordered set of transcripts.

Because each 7; already encodes everything necessary to verify a spend,
probe responses, context binding, and policy compliance, the aggregation hash
has one job: make the block’s content unforgeable in hindsight. If two producers
attempt to equivocate by publishing different blocks for the same slot, the dif-
fering txh; values make the fork explicit. Honest validators will only extend the
branch whose header and committee signature are first to satisfy the acceptance
rules; the other branch’s txh; serves as a forensic artifact showing exactly which
transcripts diverged.

The design avoids heavy cryptography in the hot path. Computing txh; is
linear in the total transcript length and requires a single pass of H. Validation
cost is dominated by per-input RWP checks, which are themselves constant-time
per probe. This division keeps block creation and propagation latency low while
leaving room for high transaction throughput without specialized hardware.

Ordering policy for {r;} has consensus implications. To prevent censorship-
based grinding or mempool manipulation, producers can be required to sort
transcripts by a deterministic key, such as H(TAG[SORT]|| 7;), or by fee-per-
weight with a deterministic tiebreaker. Whatever the rule, it must be part
of the consensus spec so that any two honest producers assembling the same
candidate set produce the same txh;.

In fraud investigation and audit scenarios, txh; facilitates succinct account-

10

ability. A regulator or exchange can ask for the transcripts corresponding to a
suspicious block; a light client can verify inclusion by requesting the transcript
bytes plus a Merkle branch (if Merkle-ized) and recomputing txh;. No signature
keys or confidential material are needed to check the evidence, preserving the
system’s “public verifiability without private keys at rest” philosophy.

Because RWP transcripts are ephemeral and context-bound, txh; also acts as
a “forgetting boundary.” Old blocks can prune transcript bodies while retaining
txh; (or the Merkle root) and the header. This allows archival nodes to compact
storage without compromising verifiability: a future accuser can always reintro-
duce the transcript body from an external archive and demonstrate inclusion
against the preserved txh;.

Finally, TAG[TXH] ensures transcript aggregation cannot be confused with
other header-level commitments. If a future upgrade adds a parallel commit-
ment for data blobs, logs, or rollup states, the tag separation prevents adver-
saries from attempting cross-component hash replay attacks where a fake set of
transcripts could masquerade as blob data or vice-versa.

Ay = H(TAGIACC]|| A¢—1 || comy || txh || pol,)

“A sub t equals hash of tag A-C-C concatenated with A sub t minus one,
concatenated with com sub t, concatenated with t-x-h sub t, concatenated with
pol sub t.”

The accumulator A; is the ledger’s one-way spine. It chains the entire history
by hashing the previous accumulator A;_; with the current capsule commitment
com;, the transaction hash txh;, and a policy word pol,. TAG[ACC] provides
domain separation for the chain accumulator. Once a block is finalized, altering
any constituent, time, seed, policy, or transcript set, changes A;, which in turn
changes every subsequent A;;1, A;io,.... This is the cryptographic root of
immutability.

The previous accumulator A;_; gives the construction its inductive strength.
Any successful second-preimage on a past block must also collide the entire suffix
of the chain, which is infeasible under standard assumptions for modern hash
functions. This property mirrors the “block header chain” of PoW systems but
without the need for difficulty targets or energy expenditure; security rests on
the committee’s signed time/seed and the hash chain’s resistance to history
rewrites.

pol, is a consensus-layer policy word distinct from aux,. It carries the rules
that validators actually enforce when deciding to accept A;. Examples include
thresholds for the beacon signature scheme, allowed ranges for timestamp drift,
fee schedule parameters, and activation heights for soft forks. By hashing pol,
into A;, the block irrevocably records the rule context under which it should be
interpreted, allowing future clients to re-validate history even across multiple
governance eras.

The accumulator is signed by the beacon committee and placed in the block
header. A threshold signature o; = Sign.(A:) certifies that a qualified majority
(> t of n) agrees on the time window and seed for that interval. Validators check

11

o before considering the block for extension. Because the signature covers Ay,
it implicitly covers com; and txh; as well, tying the randomness and content to
the committee’s attestation.

Fork choice becomes “extend the longest valid, correctly signed accumulator
chain.” There is no difficulty metric; instead, validity hinges on cryptographic
checks (RWP and signatures) and policy rules. If two branches exist for the
same slot, only one can carry a valid committee signature, or only one will
be extended as subsequent slots receive signed accumulators. Honest nodes
automatically converge on the branch with continuous committee attestations,
providing deterministic finality after a small number of windows.

The accumulator makes SPV simple and robust. A light client need only
track the sequence of (A, o) pairs and, for a payment, request the relevant txh,
inclusion proof plus the transcript. The client verifies the committee signatures,
recomputes A; locally, and checks the RWP equations. No heavy state is re-
quired, and no long-term public keys must be pinned other than the committee’s
rotating verification keys and hash-function parameters.

From a performance perspective, computing A; is a single hash over fixed-
size header fields plus the one digest txh;. This keeps header sizes tiny and
header-to-header validation constant-time. Combined with the RWP verifier’s
symmetric-only arithmetic, the ledger attains high throughput and low latency
without specialized accelerators, and remains resilient against future quantum
speedups that disproportionately threaten asymmetric primitives.

Finally, the accumulator structure is future-proof. If the network later
adopts post-quantum threshold signatures (e.g., lattice-based) or adds auxiliary
commitments (e.g., data-availability roots), those elements are either captured
inside com; or added as new tagged fields under pol,, while the outer accumulator
A; and its validation logic remain unchanged. This modularity keeps consensus
code compact, auditable, and amenable to formal verification, aligning with the
ENI6MA design goal: minimal trusted state, maximal verifiability.

4. Proof-of-Knowledge in Lieu of Proof-of-Work

Where PoW burns energy to throttle block production and provide Sybil-resistance,
ENI6MA uses entropy-gated knowledge. Security rests on three pillars:

1. Ephemerality: Witness W binds to (z,T, q). Replays at a different time
or context fail.

2. Statelessness: No reusable private key or long-term secret exists outside
M (sealed inside compiled twins).

3. Symmetric verification: Checks are hashes, XORs, and a compact com-
mittee signature.

We model single-input soundness as:

12

Pr[ACCEPT] < negl(A) for any PPT adversary without M.

"The probability of accept is at most negligible of lambda for any polynomial-
time adversary without script M.”
Multi-input soundness aggregates (union bound):

Pr[3i forged] < h-negl(A).

"The probability that there exists an i that is forged is at most h times
negligible of lambda.”

4. Proof-of-Knowledge in Lieu of Proof-of-Work

Pr[ACCEPT] < negl(A) for any PPT adversary without M.

“The probability of accept is at most negligible of lambda for any polynomial-
time adversary without script M.”

This bound formalizes single-input soundness for an RWP spend. The
event ACCEPT means a verifier, running only symmetric checks, would deem
a forged transcript valid. The symbol A is the security parameter (e.g.,
bit-lengths for hashing, masking, and probe hardness); increasing A makes at-
tacks exponentially harder. The function negl(\) denotes any negligible func-
tion—one that shrinks faster than 1/A¢ for every constant c¢. “PPT adversary”
means any probabilistic polynomial-time attacker with oracle access match-
ing our threat model, but crucially without the sealed morphism M (the sym-
metric private map compiled into the prover/validator twins). Intuitively, unless
an attacker controls the exact code identity and the live entropy/time/context
tuple, their chance to counterfeit a valid transcript for one input vanishes with
A

The equation’s left side quantifies the best possible success chance of a
forger against one input under adaptive strategies. It already accounts for the
fact that the adversary can choose the context ¢ adversarially, eavesdrop on
network traffic, and schedule queries in time; the bound still holds because
the witness W is bound to fresh entropy z, timestamp T, and the very ¢ the
adversary hopes to subvert. Even if the attacker predicts or influences ¢, they
cannot reconstruct W = faq(x, T, ¢) without both the live entropy and the code
identity M.

The clause “without M” is more than bookkeeping; it captures the state-
lessness doctrine. Traditional signature schemes place a long-lived secret scalar
at rest; compromising it collapses security forever. Here, the only privileged as-
set is code identity—the compiled morphism M. If M isn’t in the attacker’s
possession, transcripts are information-theoretically opaque with respect to W,
and computationally unforgeable with respect to the XOR-membership tests
and the hash commitments. This shifts operational risk from perfect key cus-
tody to standard software integrity (measured boot, attestation, reproducible
builds).

13

Mechanistically, the negligible bound arises from two layers. First, projec-
tion secrecy: given 7 and ¢, inferring W (or any predicate that helps pass a
fresh probe set) is computationally infeasible. Second, probe hardness: for
any fixed probe set derived from ¢ and the block seed, the probability that a
transcript computed without W passes all XOR equalities is bounded by a
term that collapses with A (e.g., 27%" with k effective hardness bits per probe
and h probes). The reduction maps a forger for ACCEPT to either a predictor
for the masked responses (breaking projection secrecy) or to a distinguisher that
contradicts the assumed pseudorandomness of the masking and hash oracles.

Ledger-wise, this single-input bound is the guarantee that one counter-
feit cannot sneak in despite full network observation. Mempools can admit
only those transactions whose transcripts pass deterministic checks; block pro-
ducers re-run exactly the same verifier. Because verification is symmetric-only
and O(h) per input, raising A to shrink negl()\) does not create a performance
cliff. This property lets the ledger target bank-grade finality without sacrificing
throughput or pushing costs to specialized hardware.

The time binding is central to defeating replays and precomputation.
Even if an adversary records 7 today, they cannot use it tomorrow: the probe
set changes with the seed and time, and the verifier recomputes everything
from public inputs. Likewise, precomputing a catalog of transcripts for possible
q values is useless without the future entropy and timestamp. The negligible
bound therefore encapsulates both computational unforgeability and freshness
constraints in a single expression.

A natural question is what happens under partial compromise, e.g., device
theft after a spend. The bound still protects past transactions (immutability)
and future ones if the attacker cannot preserve the exact runtime environment,
entropy source, and measured M. Because there is no reusable private key to
extract, post-compromise damage is sharply limited in time; revocation policies
can simply reject transcripts whose device attestation has flipped since last mea-
surement, again without weakening the negligible acceptance bound for honest
inputs.

Finally, observe the post-quantum posture implicit in the inequality.
The reduction relies on generic properties of cryptographic hashes, PRFs, and
XOR masks—primitives for which quantum speedups do not create catastrophic
asymmetries (Grover’s gives at most square-root speedup, absorbed by a mod-
est bump in A). Thus, PrJACCEPT] remains negligible even against quantum-
capable PPT adversaries, provided parameter sizes are chosen accordingly and
the committee signature covering the header is upgraded to a PQ threshold
scheme.

Pr[3i forged] < h - negl()).

“The probability that there exists an i that is forged is at most h times
negligible of lambda.”

This inequality is a union bound that scales single-input soundness to
many concurrent opportunities for forgery. The event {3i forged} means

14

“at least one of the i under consideration was forged successfully.” The symbol
h here denotes the number of independent forgery opportunities the
analysis is accounting for—this could be the number of inputs in a transaction,
the number of adversarial queries allowed in a block interval, or any bounded
set of parallel attempts. Because the same letter h also names the probe count
elsewhere, implementers typically rename this population size to m or N in the
formal spec to avoid confusion; the inequality itself remains valid for any such
h.

The union bound is worst-case conservative and does not assume inde-
pendence. Even if an adversary cleverly correlates their attempts—choosing
contexts ¢; adaptively after observing partial failures—the probability that any
attempt succeeds is at most the sum of the per-attempt probabilities. Since each
attempt is individually bounded by negl(A) (by the first inequality), the total
risk scales at most linearly with h. In practice, the actual risk is often much
lower because attempts share randomness sources and policy constraints, but
the union bound gives a clean, audit-friendly ceiling.

For ledger engineering, this inequality translates directly into parameter
selection. Suppose a block can carry up to 10* inputs and policy treats all
of them as adversarially chosen. If negl(\) ~ 27128 then h - negl(\) < 10* -
27128 27114 still astronomically small. If the ecosystem anticipates orders of
magnitude more parallel attempts (e.g., rollups verifying many proofs per slot),
one simply increases A or the per-probe hardness k to keep the aggregate risk
below a fixed budget—without changing code paths or economic incentives.

The bound also informs fee and DoS policy. Because every additional
adversarial attempt increases aggregate forging risk linearly, the network can
price or rate-limit high-fan-out transactions or repeated failures in mempool
admission. This keeps h within expected envelopes, making the residual risk
predictable and letting operators certify quantitative security targets (e.g., “less
than 10~'8 probability of any forged input per day at peak load™).

A subtle but important implication is graceful degradation under imper-
fect randomness. If the beacon seed or local entropy source experiences minor
bias, single-input soundness might inflate the per-attempt bound by a small
factor 3, becoming /3 - negl(A). The union bound then inflates to i3 - negl(\).
Because the ledger monitors entropy quality (via self-tests, committee cross-
checks, and on-chain measurements), it can respond dynamically—e.g., shrink
per-block h, raise probe counts, or increase finality windows—keeping the ag-
gregate below the target threshold without halting the chain.

In adversarial multi-context scenarios—say, a malicious exchange trying
to double-spend across several merchants simultaneously—this inequality states
that protecting each merchant individually at negligible risk suffices to protect
all of them jointly at a comparably negligible level, given sane h. There’s no
combinatorial explosion in the analysis; the ledger’s security budget composes
linearly across concurrent verifications.

From a compliance and audit standpoint, the union bound is the bridge be-
tween cryptographic guarantees and operational guarantees. Risk offi-
cers can convert “negligible in \” into concrete service-level numbers by plugging

15

in worst-case h for their institution’s flow—per hour, per day, per peak event.
Because both sides of the inequality are explicit, these assurances can be made
contractual without revealing proprietary internals of M or the exact probe
construction.

Overall, the union bound interacts cleanly with the committee-honesty
and entropy-freshness assumptions that replace PoW’s hash-power majority.
Even if an adversary controls network scheduling or attempts to bias seeds
within some failure probability € per slot, the total probability that either
a committee failure occurs or any of the h attempted forgeries slip through
is at most € + h - negl(A\) (by another union bound). This additivity keeps
the threat model modular: improvements in beacon resilience directly subtract
from e, while cryptographic parameter choices bound the second term—together
yielding a transparent, composable security budget for the ledger.

5. Network

The network runs as follows:

1. New transactions broadcast to all nodes with transcripts 7.
2. Nodes validate inputs by running the RWP checks and policy.

3. Nodes assemble blocks for the current time window, binding com,; and
tXht.

4. The beacon committee signs A; (threshold).

5. Nodes accept a block iff all included 7 verify and the header signature is
valid.

6. Nodes extend the longest valid accumulator chain A;.

Forks resolve by longest valid chain measured in signed accumulator steps
(no difficulty). Because blocks are paced by time windows (not PoW), pa-
rameters (e.g., 1-2 s cadence) can target low-latency settlement.

5. Network

1) New transactions broadcast to all nodes with transcripts 7.

A transaction enters the network as a compact object containing its inputs,
outputs, and one RWP transcript 7 per input. The transcript 7 is the public,
ephemeral proof artifact—no long-lived signature or public key is revealed—so
onlookers learn only what is necessary to verify that the spend is authorized for
this specific time and context. Because 7 is time-keyed and entropy-keyed, the

16

object is useless to replay after its intended window; this dampens the incentive
for mempool flooding with stale data.

The broadcast layer uses gossip with duplicate suppression and content ad-
dressing: nodes announce a transaction by its hash and serve the body on
request. This keeps bandwidth bounded under contention and allows nodes
under DDoS to handle “inv” messages faster than they handle payloads. The
transaction hash is derived from a canonical serialization that includes the RWP
transcripts in a fixed order so that two honest broadcasters always identify the
same bytes with the same digest.

Admission control starts at the edge: before a node commits bandwidth, it
performs a quick, constant-time precheck—payload size limits, structural sanity,
and a shallow RWP screening that verifies domain tags and transcript framing.
These checks are symmetric-only and take microseconds, which means hostile
peers cannot force expensive work through malformed objects. If the precheck
passes, the node requests the bytes and schedules full RWP and policy valida-
tion.

To resist eclipse and partition attacks, peers prefer diverse network paths
and delay acceptance of “first seen” transactions that originate from a single
neighbor. A randomized relay map plus per-peer rate limits deters one peer
from becoming your entire view of the world. Nodes also apply rolling bloom
filters per neighbor to detect repeated spam and to quarantine misbehaving
peers without disconnecting healthy ones.

Privacy is preserved because 7 does not reveal a reusable public key. Still,
first-hop metadata can deanonymize broadcasters. To mitigate this, wallet soft-
ware uses randomized broadcast delays, dandelion-like stem/flare routing, and
optional relays through well-known “transaction fountains” to blur the source.
None of these behaviors are trusted; they simply add noise to timing analysis
without affecting verifiability.

Gossip remains robust in the face of packet loss. Announcements are cheap;
full payloads are fetched lazily and retry on timeout. If a node hears about a
transaction that fails RWP precheck, it records a short “seen-bad” memo keyed
by the hash to avoid re-requesting the same junk from other peers. This memo
expires quickly to avoid becoming an oracle for censorship.

Finally, fee signaling is embedded in the transaction body, and nodes main-
tain a mempool policy that weighs fee-per-weight and age. Because RWP ver-
ification is cheap, fee policy is less about paying for CPU and more about
protecting scarce bandwidth and block space. The broadcast step therefore
aligns economic incentives (fees) with operational costs (bandwidth and inclu-
sion probability) without introducing asymmetries attackers can easily game.

2) Nodes validate inputs by running the RWP checks and policy.

Full validation begins with reconstructing, from the transaction’s public fields,
the exact context ¢ used by the prover and deriving the designated probe set
from (g, T}, s¢). For each input, the node runs the XOR~-membership predicates
encoded in 7. These are constant-time checks over fixed-width words, which lim-

17

its timing side-channels and makes batching effective: validators can vectorize
probe checks across inputs to amortize memory accesses.

Policy validation is intentionally separate from cryptographic validation.
Once A evaluates true for an input (i.e., all XOR constraints cancel as ex-
pected), the node applies PolicyOK(gq): supply caps for the relevant asset class,
jurisdiction tags, AML patterns, and script-level constraints such as timelocks
or covenant rules. This separation keeps the core proof minimal while giving
chains and institutions freedom to evolve regulatory or business rules without
touching M or the RWP verifier.

Double-spend protection inside the mempool marks UTXOs tentatively spent
by newly validated transactions. Conflicts are resolved deterministically—typically
by higher fee-per-weight and then by a tiebreaker derived from a domain-
separated hash of the transaction. Deterministic conflict resolution eliminates
“who saw it first” races and closes a class of censor-grinding attacks where ad-
versaries try to force inconsistent views of mempools across the network.

RWP’s ephemerality removes the class of “signature malleability” issues that
plague some asymmetric schemes. There is nothing to tweak in 7 that preserves
validity while changing the hash; any byte change breaks at least one XOR
equality. This simplifies transaction ID stability and reduces the surface for
third-party malleation attacks that could otherwise strand dependent transac-
tions in mempool limbo.

Nodes also perform resource accounting at validation time. If an input’s
transcript is overly large, exceeds the allowed probe count, or requires unsup-
ported policy primitives, the transaction is rejected under consensus rules. Be-
cause the acceptable envelope is enforced identically at all honest nodes, an
attacker cannot rely on a permissive minority to propagate pathological objects
into blocks.

To defend against side-channel attempts that time the RWP verifier, imple-
mentations make the XOR checks uniform and avoid early-exit branching. Even
if this costs a few extra cycles on invalid inputs, it prevents per-probe timing
leaks that could reveal structure about W or the masking scheme. The result
is a validation routine that is not only fast but also safe to expose to untrusted
inputs at line rate.

Finally, validation emits clear diagnostics. Nodes annotate rejected trans-
actions with reason codes—bad format, policy fail, double spend, expired win-
dow—without divulging internal seed material or probe sets. This helps honest
users debug mistakes and gives operators data to tune mempool and fee poli-
cies, while preventing adversaries from learning anything useful for adaptive
forgeries.

3) Nodes assemble blocks for the current time window, binding com;
and txh;.

A “time window” is the consensus pacing unit (e.g., one second). During a
window, block producers collect validated transactions from their mempool and
lay them out in a deterministic order (fee-based with a deterministic tiebreaker).

18

Determinism matters: if two producers see the same mempool at the same time,
they should compute the same txh;, which reduces accidental forks and simplifies
replay safety for light clients.

Producers compute the capsule commitment com; = H(TAG[CAP] || T3 | H(TAG[SEED] || s¢) || auxy).
Here, T} is the canonical block time for the window, s; is the beacon seed re-
leased for this window, and aux; carries flags such as ruleset version and network
ID. Binding all three under domain-separated tags ensures that any later at-
tempt to reinterpret the header or to swap seeds between windows is detected
immediately by hash mismatch.

The content hash txh; is computed over the ordered transcripts: either as a
straight, length-delimited concatenation under TAG[TXH] for maximum speed
or as a Merkle root if inclusion proofs are required. The chosen form is a con-
sensus parameter; both preserve the property that changing even one transcript
changes txh;, which then changes the accumulator A; and invalidates the block.

Assembling within a bounded window eliminates incentive to “grind” for
lucky headers. Producers cannot iterate nonces looking for better lottery out-
comes because there is no PoW field and the seed s; is exogenous. This removes
an entire class of miner extractable value behaviors tied to header space and
forces competition where it belongs: in fee-aware, deterministic selection of
well-formed transactions.

The block body remains compact. Because RWP transcripts are already
minimal and self-verifying, there is no need for bulky signature witnesses or
script interpreters in the hot path. This compactness increases the number of
transactions that fit per window and reduces propagation time, which in turn
reduces fork rates and improves the probability that the network converges on
the same head quickly.

Producers pre-announce their candidate header (sans signature) to neighbors
as soon as com; and txh; are computed. Early header relay primes validators
to request the body and stage verification, tightening end-to-end latency. If
multiple candidates appear for the same slot, the deterministic ordering plus
committee signature (next step) resolves which one is admissible.

Finally, assembly enforces soft resource caps: maximum block weight, max-
imum transcripts per block, maximum per-sender footprint. These caps bound
worst-case verification time and prevent a single actor from monopolizing a win-
dow. Because caps are encoded in aux; and pol,, changes are explicit on chain
and enforced uniformly by all honest nodes.

4) The beacon committee signs A; (threshold).

The accumulator A; = H(TAG[ACC] || A¢—1 || com; || txh; || pol,) becomes the header’s
digest of record. A threshold t-of-n committee—diverse, rotating members—produces
a single, compact signature oy over A;. Validators accept only headers carrying
valid o; under the committee’s current public verification key set, which is itself
tracked on chain with explicit activation epochs.

Signing A; rather than its parts binds time, randomness, content, and policy
in one stroke. An adversary cannot mix-and-match a seed from one window with

19

transactions from another, nor can they salvage a valid signature over com; to
bless different content. The threshold reduces single-point risk: compromising
fewer than ¢ members does not allow header forgery, and honest members can
refuse to sign if they detect policy or content violations.

Committee beacons generate s; via unbiased protocols (e.g., verifiable ran-
dom functions aggregated and revealed with commit-reveal). Members pre-
commit to randomness, reveal after the window opens, and contribute signature
shares on A;. Slashing or ejection rules in pol, penalize failures to participate,
equivocation, or detectable bias, keeping incentives aligned and the randomness
stream healthy.

The threshold scheme is upgradeable. Early networks might use classical
BLS threshold signatures for compactness; later, a governance upgrade can
switch to hash-based or lattice-based post-quantum thresholds. Because the
signed message is just A;, the surrounding validation code hardly changes; only
the signature verification module and key management rotate, minimizing con-
sensus churn.

Operationally, the committee is not a censorship oracle. Its mandate is to
attest to time and randomness and to sign the accumulator if and only if the
header matches the published s; and satisfies consensus policy. Transaction
inclusion remains in the hands of block producers; misbehavior by committee
members is detectable (missing shares, inconsistent seeds) and punishable on
chain.

To reduce latency, signature aggregation is pipelined with block propagation.
Nodes begin distribution of the candidate header while the final signature is
still assembling; as soon as the threshold is met, the compact oy is injected and
the header becomes admissible. This pipelining keeps slot times tight without
sacrificing the cryptographic guarantee that every accepted block is committee-
attested.

The signed accumulator acts as a time certificate for light clients. A wallet
that only follows headers can verify oy, check the chain of accumulators, and,
when presented with a payment, request the transcript and a Merkle proof
against txh;. No heavy state, no trusted RPCs, and no long-lived public keys
beyond the committee’s rotating set are required for strong payment security.

5) Nodes accept a block iff all included 7 verify and the header sig-
nature is valid.

Admission is strictly conjunctive: cryptographic soundness A policy compli-
ance A valid committee signature. If any included transcript 7 fails its XOR-
membership checks, or if PolicyOK(g) fails for any input, the entire block is
invalid. Similarly, if o; does not verify under the current committee key set,
validators reject the block regardless of its contents or fees.

This “all-or-nothing” rule raises the cost of adversarial inclusion attempts.
A block producer that tries to sneak in even one bad transcript risks losing the
entire window’s fees and reputation when validators discard the block. Because
RWP verification is cheap, honest validators can afford to re-verify everything

20

before extending, making it infeasible for an attacker to rely on lazy peers.

Consensus code re-derives all header commitments locally. Validators re-
compute comy from (7%, s¢,aux;) and rebuild txh; from the ordered body. This
defends against “header/body mismatch” attacks in which a producer assembles
a well-formed header but ships a divergent body to split views. Any mismatch
results in deterministic rejection and peer reputation downgrades.

To keep admission fast, nodes pipeline checks: they verify o; as soon as the
header arrives, then stream the body and validate 7 as bytes come in. If either
stage fails, the node aborts further processing and informs peers of the rejection
reason. This protects against bandwidth exhaustion attacks where adversaries
try to force nodes to download large invalid bodies.

Admission also advances the node’s double-spend frontier. Once a block
is accepted, UTXOs consumed by its transactions are finalized in local state.
Subsequent blocks that attempt to consume the same UTXOs are invalid by
construction and can be rejected early. Because inputs are RWP-authorized,
there is no ambiguity about ownership: either the ephemeral witness matched
the context and the input is spent, or it did not and the input remains unspent.

Finally, acceptance triggers the node’s archival and pruning logic. Depend-
ing on configuration, a node might retain only headers and txh; roots after N
confirmations, discarding transcript bodies while keeping the ability to verify
inclusion proofs later. This keeps disk footprint predictable while preserving
the public-verifiability ethos that any honest observer can reconstruct the state
from compact data and shared code.

6) Nodes extend the longest valid accumulator chain A;.

Fork choice is “longest valid chain by signed accumulator steps.” Validity pre-
cedes length: a chain with more steps but an invalid signature or bad block
anywhere is non-viable. Among valid chains, nodes choose the one with the
greatest number of consecutively signed accumulators from genesis (or from
the last finalized checkpoint). This rule is simple to implement and avoids tie-
breakers based on stake or work.

Because windows are paced by time rather than by PoW, simultaneous
blocks for the same window can occur. The fork choice rule handles this by
waiting for subsequent windows to accumulate. The branch that continues to
receive correctly signed accumulators wins; the other branch stalls. With a 1-2
second cadence and typical network latency, convergence happens quickly, and
applications can pick a finality depth A (e.g., 3-5 windows) that balances risk
and user experience.

Nodes maintain a small fork buffer that tracks competing heads for recent
windows. For each candidate branch, they store the sequence of A; values and
signatures, along with minimal metadata. If a branch fails validation at any
height, it is pruned immediately. This bounded buffer prevents memory blow-
ups during adversarial bursts and ensures that honest nodes spend CPU only
on branches with a real chance to become canonical.

Fork choice is resistant to grinding because there is no “difficulty” knob and

21

no nonce space to explore. The committee’s seed s; is exogenous and unbiased,
and header commitments are deterministic functions of publicly known data.
An adversary cannot improve their odds of winning a tie by iterating many
header candidates; they can only try to produce valid content and propagate it
quickly, which is exactly the behavior we want from honest producers.

In partitions, both sides can build locally longest valid chains, each with
properly signed accumulators if the committee is also partitioned. When con-
nectivity returns, the rule deterministically selects the branch with more consec-
utive signed steps. To minimize user impact, applications can require a slightly
deeper A during suspected partitions (detected by missing peers or elevated
orphan rates) and return to normal once the network stabilizes.

Light clients implement fork choice purely over headers and signatures. They
do not need to download bodies to decide which head to follow, which is crucial
for mobile and embedded devices. When a payment is observed, they fetch only
the relevant transcript and a Merkle branch for the specific A; that currently
leads, verify the RWP checks, and present a confidence estimate based on A.

Finally, the rule composes with governance. If a new committee is appointed
or keys are rotated, pol, encodes the activation epoch. After that epoch, only sig-
natures under the new key set are valid; any chain that continues under the old
keys immediately becomes invalid regardless of its length. This clear boundary
prevents ambiguous transitions and makes upgrades a matter of header verifi-
cation, not social coordination.

Fork resolution and time windows (low-latency settlement).

Time-window pacing decouples security from energy and lets the network tar-
get human-friendly finality. With a one-second window, merchants can see a
customer’s payment land in a block within a second and reach practical finality
after a handful of signed steps. Because validation is symmetric-only, nodes
keep up with this pace even on modest hardware; bandwidth, not CPU, is the
limiting resource, and the protocol keeps payloads compact.

Window discipline relies on a tolerable clock skew bound enforced by pol,.
Validators reject headers whose T; differs from local time by more than the
allowed drift, and producers are required to align their slotting to the same
cadence. This creates a global rhythm without a central clock: the committee’s
signed headers serve as the canonical heartbeat that all honest nodes can verify.

Low latency does not mean low rigor. Each window’s header still binds s;
and content; each block’s transcripts are still fully checked. The only difference
is that the network removes miner lotteries and replaces them with an attested
metronome. In practice, this reduces the stale-block rate, improves through-
put, and makes user experience predictable—payments settle in seconds, not
minutes.

The residual reorg risk is pushed into explicit, tunable parameters. Applica-
tions set A according to value at risk and observed network health. Exchanges
might require more windows for large deposits; consumer payments can clear
after fewer. Because the fork choice rule is simple and the committee’s behavior

22

is observable on chain, these policies can be transparently justified and audited.

Fairness improves when everyone plays to the same clock. Without PoW,
there is no advantage to hoarding specialized hardware or cheap electricity. The
scarce resource is inclusion bandwidth, sold via fees, and the scheduling rule is
deterministic. This makes the system more geographically inclusive and lowers
barriers to entry for validators and service providers.

Time windows also enable clean integration with real-world oracles and re-
serve attestations. Custodians can publish RWP-attested state each window,
and anyone can verify that the reserve capsule for time 73 is bound into com, and
thus into A;. This turns the ledger into a synchronized tape for both cash-like
transfers and regulated disclosures, a combination difficult to achieve in PoW
systems with variable block times.

Finally, because the protocol exposes minimal moving parts—headers with
{4+, 04}, compact bodies with 7, and a single fork rule—implementations are
amenable to formal verification and differential fuzzing. This verifiability, cou-
pled with low-latency operation and explicit security budgets, is what gives the
RWP ledger its practical strength: it is simple to reason about, fast to use, and
stubbornly hard to subvert.

6. Incentive
Without mining rewards, incentives derive from:

e Transaction fees paid to validators/relays that supply bandwidth, stor-
age, and DoS protection.

e Beacon committee service fees (small, regulated).

e For ENI6GMA-G (gold-backed stablecoin), custodian rebates can subsi-
dize network fees when reserve attestations are posted, aligning economic
incentives with regulated issuers.

Fee markets are explicit and predictable; no energy cost externality is re-
quired for security.

ENI6MA’s incentive model is intentionally minimal and transparent because
security does not rely on burning energy or amassing hash power. The three
explicit sources are transaction fees, a small service fee for the beacon committee,
and—when operating ENI6MA-G—a custodian-funded rebate that subsidizes
user fees when reserve attestations are posted. Each of these values is visible
on-chain and parameterized in the policy word pol,, so operators and auditors
can reconstruct who paid what, for which service, in which block window. The
absence of a mining reward eliminates the arms race for specialized hardware,
shifting competition to efficient validation, propagation, and honest operation.

Transaction fees compensate the actors who actually incur costs: validators
and relays that provide bandwidth, storage, and DoS filtering. Fees are as-

23

sessed on a predictable fee-per-weight schedule where “weight” is a consensus-
measured proxy for bytes on the wire and verification work (primarily the
size of transcripts 7 and the number of inputs). Because RWP verification
is symmetric-only and constant-time per probe, “work” is tightly bounded and
public, making price discovery far easier than in systems where verification cost
varies wildly with script complexity. Users can estimate costs ahead of time;
validators can provision capacity with confidence.

Fee distribution is aligned with network health. A block producer receives
the majority share for assembling a valid block in its window, but a configurable
fraction may be earmarked to upstream relays that can present lightweight
forwarding receipts proving they helped disseminate the included transactions
promptly. This relay share deters selfish propagation and rewards nodes that
keep the network well-connected under load. Implementation-wise, receipts are
just short hash attestations rolled into the next block’s auxiliary fields and paid
out deterministically based on pol,.

The beacon committee’s service fee is deliberately small and regulated by
policy. Its purpose is to fund the generation of unbiased seeds s;, thresh-
old signing of accumulators A;, and the operational security needed to keep
members diverse and honest. Because the committee’s job is attestive—not
discretionary—compensation is tied to objective delivery: a fee is earned only
when the committee publishes the seed and a valid threshold signature o; for the
window. Missed or equivocated duties invoke slashing or forfeiture as encoded
in pol,, ensuring the fee line item translates into reliability, not rent-seeking.

For ENI6GMA-G, custodian rebates create a virtuous loop between reserve
transparency and user costs. When a qualified custodian posts a reserve attes-
tation capsule in a window (bound via com;), a precommitted rebate budget
offsets that window’s transaction fees for all users, or for transactions involving
the stable asset, depending on policy. This ties economic advantage to verifi-
able disclosure: the more consistently custodians prove reserves, the lower the
effective fees the ecosystem experiences, accelerating adoption without compro-
mising security or neutrality.

Fee markets remain explicit and predictable because no energy cost ex-
ternality needs to be recovered by the protocol. The network can adopt a
base-fee + tip design (akin to EIP-1559) where a block-to-block base fee re-
sponds smoothly to observed utilization, and an optional tip decides ordering
among equally priced transactions. With deterministic ordering and bounded
verification cost, fee volatility is dampened compared to PoW systems: users
aren’t competing against stochastic block times or hash-rate shocks, but against
a fixed window cadence and capacity targets published in aux;.

From a security perspective, fees directly price DoS and Sybil attempts.
Every broadcast consumes scarce bandwidth and block space; every validation
is a small, bounded cost. By requiring even small fees for inclusion—while
allowing zero-fee gossip to be rate-limited—attackers must spend real value to
sustain floods, and honest nodes can tune acceptance thresholds without risking
liveness. Because admission policies and caps are uniform and on-chain param-
eterized, there is little room to exploit permissive islands to smuggle oversized

24

payloads.

Finally, the incentive layer is governable without ambiguity. All parame-
ters that affect economics—fee caps, relay share, committee fee schedule, rebate
rules—are versioned in pol, and therefore hashed into A;. Changes are visi-
ble, auditable, and replayable by light clients from headers alone. This keeps
the economic contract between users and operators crisp: services rendered
are measurable; fees paid are justified by verifiable work; and security derives
from well-priced, bounded resources rather than external subsidies or opaque
privileges.

7. Reclaiming Disk Space

Transactions in each block are Merkle-ized for pruning while preserving header
hashes:

mrk; = MerkleRoot(7y, ..., Tk).

"m-r-k sub t equals the Merkle root of tau one through tau K.”
Older blocks can safely prune transaction bodies, retaining (A, comy, mrk;)
and committee signatures. Light clients keep headers only.

mrk; = MerkleRoot(7y, ..., Tk).

“m-r-k sub t equals the Merkle root of tau one through tau K.”

The value mrk; is the compact fingerprint of a block’s transaction tran-
scripts. Each 7; is the RWP proof object for a specific input; K is the number
of included transactions (or inputs, depending on serialization). The Merkle
root is computed over domain-separated leaf hashes (e.g., H(TAG[LEAF] || 7;))
and internal node hashes (e.g., H(TAG[NODE]| L || R)), ensuring that neither
a transcript nor a tree shape can be confused for a different object or level. By
placing mrk; in the header (via the accumulator A;), the system binds the exact
set and order of transcripts to the block forever.

A Merkle tree gives logarithmic inclusion proofs. To convince a light
client that a particular 7; was part of block ¢, a prover supplies the transcript
bytes and a path of sibling hashes from the leaf up to the root. The light client
recomputes the leaf hash, iteratively hashes with each sibling in the correct
left /right position, and checks equality with mrk; from the header. The proof
size is O(log K'), and verification is a handful of hash calls—perfectly matched
to ENI6MA’s symmetric-only philosophy.

Once a block has matured past a policy-defined depth A, nodes can prune
the transaction bodies while retaining just (A, com, mrk;) and the committee
signature o;. This collapses storage from “all transcripts forever” to “headers +
roots,” yet preserves full auditability: any party can later present a transcript

25

and its Merkle branch to re-establish inclusion. Because mrk; and A; are chain-
hashed, pruning is provably safe—changing even one bit in history would cascade
into mismatched accumulators.

Light clients thrive in this model. They track only headers—essentially the
sequence of (A4¢, 0¢) plus com; and mrk;—and, upon receiving a payment, request
the minimal data needed: the relevant 7 and a Merkle branch. They then verify
the committee signature for the header, recompute the branch up to mrk;, and
finally run the RWP XOR checks locally. No full state, no trusted gateways, and
no background sync are required to achieve strong assurances about a specific
spend.

Pruning does not mean losing state. Full nodes maintain the UTXO set (or
equivalent spendable state) as a compact key-value structure updated at each
block. This set is all that’s needed for ongoing validation; historical transcripts
are only needed for audits or disputes. Nodes may periodically snapshot the
UTXO set and discard intermediate history beyond A; new nodes can bootstrap
by verifying headers and then ingesting a recent, checkpointed UTXO snapshot
signed by the committee, or by replaying from genesis if they wish to trust
nothing but code and math.

Archivists and regulated entities can operate history warehouses that
store pruned transcripts off-chain. Because authenticity is anchored by mrk;, any
transcript pulled from an archive is either authentic (its inclusion proof verifies)
or useless. This separation of concerns lets the base network stay lean while
still supporting rich compliance and forensics workflows: subpoenas, dispute
resolution, and academic analysis can proceed without burdening every validator
with indefinite data retention.

Data-availability during the fresh window is ensured by propagation rules
and bounded pruning delay. Producers must make full bodies available
when the block is published; validators refuse to extend headers whose bodies
they cannot fetch and verify. Only after A signed steps—when the probability of
reorg is negligible—do nodes begin pruning. If the ecosystem requires stronger
guarantees, erasure-coded sidecar blobs can be committed under a tagged root
in aux;, preserving the same pruning mechanics with verifiable retrieval.

The Merkle commitment is future-proof and post-quantum friendly. Its
security reduces to the collision and second-preimage resistance of the underly-
ing hash; quantum adversaries gain at most a square-root advantage (Grover’s),
absorbed by increasing digest size. Moreover, mrk; composes cleanly with ad-
vanced structures like Merkle-Mountain Ranges (MMRs) for efficient append-
only proofs, or with vector commitments if later upgrades want sub-logarithmic
proofs for specific indices—all without changing the accumulator A; or the RWP
verifier.

By making pruning a first-class, consensus-aware behavior—anchored by
mrk, carried in A, and guarded by o;—ENI6MA achieves the trifecta of scal-
ability, verifiability, and longevity. Validators run fast with small disks; light
clients verify like full nodes for the transactions they care about; and historians
can reconstruct any piece of the past with cryptographic certainty.

26

8. Simplified Payment Verification (SPV)

A light client downloads the header chain {A;} and verifies the committee sig-
natures. For a payment, it requests the Merkle branch proving inclusion of 7 in
mrk; and verifies the RWP checks for that input (the checks are public, symmet-
ric operations). Thus SPV requires no full node and achieves constant-time
verification per input.

A light client follows only the signed headers, i.e., the sequence {A;} with
their threshold signatures {o;}. Here, A; is the block’s accumulator digest (the
one-way spine that commits to time, randomness, policy, and content), and oy
is the beacon committee’s threshold signature over A;. By verifying each oy
against the currently active committee verification keys (advertised in policy
and rotated on-chain), the light client gains a succinct, trust-minimized view
of time and ordering—without fetching full blocks. “Curly-brace A sub t is the
header chain; sigma sub t is the committee signature over A sub t.”

For a specific payment, the sender provides 7 (the RWP transcript for the
spent input), the block height ¢, and a Merkle branch path that connects 7 to
the block’s transactions root mrk;. The light client recomputes the leaf hash
for 7, folds it up the branch, and checks equality with the mrk; recorded in the
corresponding header. This step answers “was this exact transcript included in
block t?7” with logarithmic work.

VerifyMerkle(r, path, mrk;) — true.

“Verify-Merkle of tau, path, and m-r-k sub t returns true.”

After inclusion, the light client locally re-derives the context ¢ (UTXO iden-
tifiers, amounts, recipient script, chain ID, etc.) from the transaction body
and recomputes the designated probe set tied to g, the block seed s;, and the
block time T; already embedded in the header’s capsule commitment. It then
runs the public, symmetric RWP checks—fixed-width XOR equalities—over
7. Because the verifier is symmetric-only and constant-time per probe, this step
is computationally tiny and side-channel resistant even on mobile devices.

Acceptance at the input level uses the same predicate full nodes use; SPV
does not weaken the rule.

ACCEPT <= A =1 A PolicyOK(q).

“Accept if and only if Lambda equals one and Policy-OK of q is true.”
Here, A is the logical AND of all probe-wise XOR checks for this input, and
PolicyOK(q) applies any policy flags enforced at that height (jurisdiction tags,
asset caps, timelocks, etc.), all of which are committed in A; via pol,.

To decide how final a payment is, the light client counts a small number
A of consecutive, properly signed headers after height ¢. Because fork choice
is “longest valid chain by signed accumulator steps,” the probability of a reorg
that dislodges the payment decays rapidly with A. The client can expose this
as a simple meter—e.g., “2/5 confirmations”—without maintaining a mempool
or running heavy reconciliation logic. The values involved are explicit: ¢ (the

27

block height containing 7), A (the confirmations required), and o¢41,...,014A
(the successive committee signatures).

SPV’s privacy posture is materially improved by RWP. Because 7 contains
no reusable public key or signature seed, correlating spends across time by
key fingerprint is impossible. Light clients can further randomize who they query
for path and body bytes (dandelion-like routing, randomized gateways) without
trusting those relays: every byte returned is immediately checked against mrk;
and A;.

Robustness comes from layered checks that a malicious server cannot fake.
A dishonest full node cannot convince an SPV client that a non-included 7 was
included, because any invented branch fails the equality to mrk;. It cannot con-
vince the client to accept a header on a dead branch, because o; must verify un-
der the current committee keys; nor can it make an invalid RWP transcript seem
valid, because the XOR-membership predicates are recomputed locally from
public data. The only remaining levers—network partition and eclipse—are
mitigated by multi-peer header sampling and signature gossip.

The model is post-quantum friendly end-to-end. SPV relies on hash
preimage and collision resistance (for mrk; and A;) and on the committee’s
threshold signature scheme; both can be instantiated with PQ algorithms (e.g.,
hash-based or lattice-based) without changing the SPV flow. If a PQ upgrade
occurs, the only change a light client sees is the header’s signature type and
keys; all other values and checks remain identical.

Finally, the economic footprint is minimal and predictable. A wallet only
fetches headers and, on demand, a handful of body bytes for the payments
it cares about. No archival duties, no perpetual sync. Yet the assurances
match full-node logic for that payment because the client verifies the exact
same predicates over 7, mrk;, and A;. This alignment—full security for local
facts, with tiny bandwidth—is the core strength of SPV in an RWP ledger.

9. Combining and Splitting Value

Transactions support multiple inputs and outputs. Standard coin-selection con-
solidates dust; change outputs return to the sender’s script. Fan-out is not
problematic because validity is local to the included inputs’ 7 and the Merkle
proof of inclusion.

A transaction may consume multiple inputs and produce multiple outputs;
the ledger enforces value conservation with a simple invariant. Let {in;}72; be
input amounts and {outy}}?_; be output amounts, then

n

iinj = Zoutk + fee.
j=1

k=1

“Sum of inputs equals sum of outputs plus fee.”
Every input carries its own RWP transcript 7; proving authorization for this

28

transaction’s context ¢;, which binds the referenced UTXO, amounts, recipient
script(s), and chain identifiers. Because each 7; is time- and context-bound, the
act of combining or splitting value introduces no new attack surface: each input
stands or falls on its own XOR-membership checks.

At the transaction level, acceptance composes conjunctively across inputs
and policy.

ACCEPT <=\ (A; = 1A PolicyOK(g;)) A ConserveVal.

j=1

“Accept transaction if and only if, for every j from one to m, Lambda sub j
equals one and Policy-OK of ¢ sub j is true, and the conserve-value rule holds.”
Here, A; is the probe-wise AND for input j, and ConserveVal encodes the sum
equation above. This structure makes fan-in (many inputs) and fan-out (many
outputs) straightforward: validation work scales linearly, and no cross-input
algebra beyond value conservation is required.

Standard coin-selection strategies (largest-first, knapsack, branch-and-bound)
can be used to consolidate dust into fewer, larger outputs—lowering future fees
and shrinking the UTXO set. RWP strengthens privacy in this process because
there is no persistent public key that links the consolidated inputs; each au-
thorization is a fresh, per-context transcript. Policy can set a dust threshold
dmin to ban outputs below an economic minimum, defending against UTXO set
bloat. “d sub min is the minimum dust value allowed for an output.”

Change handling remains familiar: any excess input value becomes a change
output to a fresh script controlled by the sender. With RWP, that script can
require future spenders to present an RWP transcript satisfying particular policy
tags (e.g., device attestation class, jurisdiction). Since 7 is non-reusable, address
rotation is natural and correlation-resistant; wallets can default to one-time
scripts without key-management pain.

Complex payouts—salary batches, airdrops, channel openings—benefit from
deterministic ordering of outputs and inputs under a domain-separated tag
(e.g., sort by H(TAG[SORT]| entry)). Determinism minimizes accidental forks
if a block producer reconstructs the same transaction from mempool fragments
and ensures that txh; and mrk; are stable under re-serialization. The values
that matter here are the serialization rules and the tag used for sorting; both
are consensus parameters recorded in policy.

From a DoS and resource perspective, policy caps on m and n (inputs and
outputs per transaction) prevent pathological fan-outs. Because RWP verifica-
tion is cheap, the main scarce resources are bandwidth and Merkle-path depth.
Caps are published in pol, so every node enforces the same limits; fee-per-weight
ensures very large, but still legal, transactions pay commensurately for the block
space they occupy.

Multi-party and covenant-style constructions compose well with RWP. For
example, a payout can require threshold RWP where k of r distinct devices
each supply a 7 bound to the same transaction context g. The acceptance
predicate simply accumulates a larger conjunction: all k chosen inputs must

29

satisfy A = 1. Covenants can constrain descendants (e.g., “must pay to a script
with tag X”) by embedding rules into ¢ and PolicyOK, which are both committed
in the header chain via A;. No new signature scheme or opcodes are needed;
the ledger’s existing variables—r, ¢, A, and pol,—carry the semantics.

Fee-bumping and replacement policies (e.g., Replace-By-Fee) remain avail-
able with clear, consensus-visible rules. A replacement transaction must refer-
ence the same inputs, offer a higher fee, and pass the same RWP checks for each
gj. Because 7; binds tightly to the transaction’s amounts and outputs, an at-
tacker cannot “tweak” a victim’s transaction into paying a different destination
while preserving validity: any change to ¢; forces a completely fresh 7;, which
only the rightful prover can produce within the window.

Finally, the compositionality of combining and splitting is friendly to light
clients. SPV needs only the Merkle branches for the specific inputs the client
cares about, plus the accumulator headers that make the chain canonical. Whether
a payment arrived through a single-output send or a complex batched transac-
tion is immaterial: the client’s local checks over 7;, mrk;, and A; are identical.
This uniformity—one simple acceptance logic everywhere—keeps the im-
plementation surface small while scaling to complex, real-world payment flows.

10. Privacy
Unlike bank rails that centralize linkage, ENI6GMA preserves privacy by:

e Pseudonymous scripts per transaction, rotating addresses by default.
¢ Ephemeral witnesses: no static signature key appears on chain.

e Short-lived transcripts: outside their time window, they are useless for
correlation.

Optional mixers or payment codes can further obscure linkages while re-
maining compatible with RWP verification.

ENI6MA’s privacy model starts from the observation that most leakage on
conventional rails comes from durable identifiers—account numbers, long-lived
public keys, or static device fingerprints—being reused across time. In the RWP
ledger, a spend is authorized by a transcript 7 that proves knowledge for a
single event only, and never exposes a reusable signing key. The variables at
play are 7 (the proof artifact), 2 (fresh session entropy), T’ (the block/window
time), and ¢ (the public transaction context: referenced UTXOs, amounts, re-
cipient script, chain/network ID). The binding relation “7 is valid for (z, T, q)”
eliminates a global handle; in “tau binds to x, T, and q for this spend alone.”

Pseudonymous scripts ensure that recipients don’t publish an enduring ad-
dress. Each output’s locking script is a one-off predicate that will later require
an RWP transcript matching its template. Because there is no long-lived public
key inside the script, wallets safely rotate by default—each payment request

30

generates a fresh script hash, and each future spend will produce a fresh 7. The
value pol, (policy at time t) can even require rotation by consensus, preventing
accidental reuse that could aid linkage.

Ephemerality of the witness flows from the sealed morphism M and the
function W = faq(z,T,q): the witness W never leaves the device and never
repeats, and 7 reveals only masked responses that cancel under verifier-side
XOR checks. An observer who sees 7 and later sees another 7/ gains no sta-
tistical purchase to link them unless the public contexts g themselves correlate
(e.g., identical amounts and change patterns). Even then, the privacy risk is
contextual, not cryptographic; users can mitigate it with coin-selection and
output-amount shaping policies that are visible in pol,.

Short-lived transcripts blunt network-level surveillance. A gossip adversary
who records 7 at time 7' cannot replay it, and therefore can’t “probe” the network
later to find where it is accepted; any such probes will fail the recomputed probe
set derived from sy (the block seed) and T'. The values sy and T are committed
in the header via comy, making the verifier’s challenge set common knowledge
after the fact but useless for linkage going forward.

Because SPV verification is symmetric-only, light clients can retrieve data
anonymously from multiple peers and verify locally. A wallet asks for the
Merkle branch for a candidate 7 under mrk; and checks inclusion against the
accumulator A;. No trusted indexer is required, and the wallet never needs to
reveal which branch of the tree it ultimately cares about. The variables mrk;
(the Merkle root for block t) and A; (the block’s accumulator) are the only
anchors it needs, both broadcast to everyone.

Optional mixers and payment codes plug in without modifying the RWP
verifier. Mixers are simply transactions whose outputs are deliberately uniform
in value and script template; because 7 is one-time and scripts are pseudony-
mous, a well-designed mixer reduces the correlation of inputs to outputs with no
custom cryptography. Payment codes (e.g., derivation schemes that let a recip-
ient publish a single code yet receive to unlinkable scripts) are implemented at
the script-derivation layer and show up in chain data only as ordinary one-time
scripts, still spending with fresh 7.

Change outputs are a persistent source of heuristic linkage in UTXO sys-
tems. ENI6MA counters by encouraging wallets to send deterministically
indistinguishable change: randomize exact amounts within small ranges, ro-
tate scripts, and, when feasible, aggregate change with later payments through
coin selection. Since authorization never reuses a public key, even change that
returns to the same owner arrives under a fresh predicate, reducing the success
rate of change heuristics that rely on key reuse or script templating.

Finally, compliance-oriented privacy is enabled rather than obstructed. If a
user opts into selective disclosure, a wallet can reveal a minimal tuple—(¢, 7, path)—proving
receipt or payment inclusion under mrk; and A;, without revealing anything
about unrelated activity. Because 7 cannot be repurposed and path is a local
Merkle proof, the verifier learns only “this one transfer happened.” This one-fact
proof pattern is a direct consequence of encoding authorization via ephemeral
knowledge rather than durable identity.

31

11. Security Calculations

11.1 Single-Window Forgery

Assume the XOR-membership test uses h probes with per-probe false-pass prob-
ability 2% under random guessing. Then:

Pr[A =1 | guess] = 27%",

"The probability that Lambda equals one given guessing equals two to the
power of minus k times h.”

Selecting k = 8 and h = 8 yields 274 per input; combined with hash binding
and policy checks, the overall bound is dominated by the negligible term negl(\)
from breaking the transcript construction.

11.2 Double-Spend Race

Let A be the finality window in blocks (time windows). An attacker who
issues two conflicting transactions must create two valid transcripts 7,7’ for
disjoint contexts g, ¢’ over distinct windows (or sub-windows). Without access
to M and live entropy, the best strategy is precomputation or replay, both
of which fail by design. The residual risk is committee capture within A:

n

n . .
Prlreorg > A] < Z (,)57(1 —e)" I,

— \J
j=
"The probability of a reorganization at least Delta is at most the sum for j
from t to n of binomial n choose j times epsilon to the j times one minus epsilon

to the n minus j,”

where € is the per-member compromise probability and ¢ the threshold. Pa-

rameterizing n and t yields exponentially small reorg odds.

11.3 Liveness

Because blocks follow wall-clock pacing, expected confirmation time is linear in
A. With a 1-second block window and A = 5, typical practical finality is ~ 5
seconds, absent network partitions.

12. ENI6MA-G: A Bank-Grade Stablecoin (1 g
Gold per Token)

ENI6MA-G is a fiat-onramp-friendly stable instrument defined as one token
per gram of vaulted gold held by qualified custodians.

32

Issuance & Redemption.
Custodians mint/burn on customer instruction. Each block window, custodians
publish a reserve attestation capsule:

res; = H(TAG[RES] || SKU || mass; || vaultID || audit_ ref),

"res sub t equals hash of tag R-E-S concatenated with S-K-U, concatenated
with mass sub t, concatenated with vault I-D, concatenated with audit refer-
ence.”

and an RWP transcript 77°° showing the attestor’s live control over the data
source(s) at time T;. The capsule is included in txh; and bound into A;. Anyone
can verify that total circulating supply < attested reserves (within tolerance).

Why banks can adopt.

e No reusable HSM keys to leak; no private keys at rest.
e Public, continuous reserve attestations with cryptographic binding.

e Symmetric-only verification (hash/XOR/threshold-sig), post-quantum
friendly.

e Fine-grained compliance policies embedded via pol, (jurisdictions, KYC
tags, etc.).

12. ENI6MA-G: A Bank-Grade Stablecoin (1 g
Gold per Token)

Overview and monetary model
ENI6MA-G defines the unit of account as exactly one (1) gram of vaulted,
good-delivery gold per token, with redemption rights administered by quali-
fied custodians under published policies. The monetary base is therefore not
an algorithmic promise but a physically collateralized ledger state whose
adequacy can be verified by anyone through reserve capsules committed every
block window. Let G = 1 gram/token be the conversion constant; this “gram
code” functions as the stable code—a neutral, apolitical base unit that maps
deterministically into any currency via public gold prices. Because the ledger’s
correctness depends only on symmetric verification and capsule arithmetic (not
on proprietary price oracles), users can price, hedge, and settle across currencies
without trusting opaque keyholders or energy-based lotteries.
Cross-currency valuation and settlement
The gram code establishes a canonical bridge between token quantity and any
fiat currency ¢ € {USD,EUR,JPY,...}. Let P.(t) denote the price of one
gram of gold in currency c¢ at time t (sourced from any regulated venue or
benchmark). Then the fair value V.(t) of ¢ tokens is

Vo(t) = q- G- P.(t).

33

“V sub c of t equals q times G times P sub c of t.”
Because G is constant and public, bilateral FX flows reduce to two observable
prices: the gram price in the source currency and the gram price in the desti-
nation currency. Routing payments through grams avoids triangular arbitrage
complexity and makes bank treasuries’ VaR transparent—mno secret pegs, only
metal.

Programmatic FX fences
Banks may prefer to smooth intraday volatility. Define a time-weighted bench-
mark P. over a policy window © (e.g., 30 minutes):

— 1
P, = ol PRAG!

teoO

“P bar sub ¢ equals one over the size of theta times the sum over t in theta
of P sub c of t.”
Using P, to quote retail conversions while settling interbank at real-time P,
yields predictable customer experiences without hiding basis risk; all parameters
sit in the on-chain policy word pol,, so auditors can replay decisions.

Risk partitions and bankruptcy remoteness
Reserves are held in segregated, bankruptcy-remote trusts. The ledger records
which vault and SKU backs circulating supply; redemption flows are routed
by vaultID and SKU, so a custodian-level issue cannot contaminate the global
peg. Banks can hold multiple SKUs (e.g., 400 oz bars vs. 1 kg bars), with
on-chain conversions executed by the custodian only when bar lotting requires
it. The ledger’s invariants do not change: tokens map to grams; grams map to
SKUs; SKUs map to vault balances.

Operational clarity for banks
From a core-banking perspective, ENI6GMA-G behaves like a real-time, bearer
certificate of deposit with metal backing and instantaneous, final settlement.
Customer KYC/AML status rides in tag bits inside pol,; transfer predicates
require RWP-PASS and compliant tags, ensuring that bank policy is enforced at
spend time without revealing identity on chain. Treasury sees a one-line balance
per legal entity; reconciliation reduces to header checks and reserve capsule diffs;
privacy is preserved because no long-lived signing keys ever appear.

Fraud surfaces retired by construction
There are no private keys at rest to exfiltrate from HSMs, no static issuer
signatures to forge, and no miner liveness assumptions. Every authorization
is an ephemeral RWP transcript, and every reserve disclosure is a committed
capsule under the signed accumulator A;. Attackers cannot “practice” forgeries
in dark pools because transcripts expire with the window and probes change with
the seed. The bank’s security operations center measures three things—mnot a
thousand: code identity, entropy freshness, and committee signature validity.

Regulatory auditability
All economically relevant promises are machine-verifiable from headers: circu-
lating supply, reserve mass per vault, SKU composition, policy version, and
signature quorum. External auditors can replay from genesis using the pub-

34

lic code and no secrets, recomputing the same accept/reject decisions that
honest nodes did. This produces defensible SOC-1/SOC-2 evidence, shortens
audits, and allows regulators to build independent monitors that watch for drift
between supply and reserve capsules.

Issuance & Redemption and the reserve capsule
res; = H(TAG[RES] || SKU || mass; || vaultID || audit__ ref)

“res sub t equals hash of tag R-E-S concatenated with S-K-U, concatenated
with mass sub t, concatenated with vault I-D, concatenated with audit refer-
ence.”

The reserve capsule res; is a tamper-evident digest of a custodian’s state
at window ¢. The symbol SKU identifies the class of metal (e.g., 995/1000 gold)
and its lotting format; mass, is the gram-accurate total mass under that SKU
currently unencumbered; vaultID identifies the storage location; and audit _ref
binds an external attestation artifact (report hash, timestamp, or chain of cus-
tody). Domain separation via TAG[RES] prevents cross-component collisions.
Any post-hoc attempt to revise inventory or point the same digest at different
documents breaks second-preimage resistance and is immediately detectable.

The custodian must also prove live control of the data source at T;. They
publish an RWP transcript 77 bound to (x, T}, gres); Where gres includes the
human-readable disclosure (SKU, mass, vault, audit ref) and the current accu-
mulator A;_,. Validators verify 77 exactly like a payment transcript—symmetric
XOR checks only—so no special issuer keys or custom logic exist. If the custo-
dian’s device identity drifts (attestation hash changes), 77 fails; the bank ops
team sees it in the very next window.

Once res; and 77°° are included, they are pulled into the block’s content hash
txh; and then into the accumulator A;. This yields a public inequality that any-
one can evaluate from headers alone. Let Supply, be total tokens outstanding
for the SKU family at height ¢, and let Mass; be the sum of mass; across all cus-
todians after policy haircuts h (e.g., insurance deductibles, transport buffers).
The safety condition is

Mass;
G

“Supply sub t is less than or equal to Mass sub t divided by G times one
minus h.”
Violation is objective: either the inequality holds or it does not. No FOIA
requests, no phone calls.

Mint and burn discipline
Minting requires a preimage of future reserve: a custodian (or consortium) first
posts res; reflecting incoming metal; only then may they mint tokens up to the
allowed slack. Burning mirrors the process: tokens are destroyed on chain; the
next resy1 reflects the newly unencumbered mass. This order prevents “mint

Supply, < (1 =h).

35

now, promise later” drift and turns redemption into a two-line ledger diff visible
to counterparties and regulators without revealing PII.

Tolerance bands and SKU rotation
Physical logistics induce small timing mismatches. Policy encodes a tolerance
band e and SKU rotation rules:

Mass;,
a <

“Absolute value of Supply sub t minus Mass sub t over G is less than or
equal to epsilon.”
Breaches outside € trigger rate-limited mint/burn locks and on-chain incident
tags, not ad-hoc emails. SKU rotation (e.g., melting and recasting) is expressed
as a zero-sum move between SKUs within the same vaultID, leaving Mass; and
inequality checks intact.

Redemption workflows
Retail redemption can be physical (deliver metal) or financial (wire in fiat). The
transaction predicate checks RWP-PASS plus KYC tag bits; upon redemption,
the custodian burns the customer’s tokens and issues a redeem receipt whose
hash is included in the next res; via audit _ref. Institutional redemption can be
bar-for-bar: tokens map to grams; grams map to bar counts rounded by SKU;
any remainder stays as token change. Every step is cryptographically linked
to headers, so disputes are resolvable with a single Merkle proof and a receipt.

Multi-custodian aggregation
Banks rarely rely on a single venue. The ledger naturally aggregates res; across
many custodians and vaults; Mass; is a sum, not a statement of faith. Diver-
sity reduces idiosyncratic risk and allows jurisdictional matching—a Euro-
pean bank can accept only EU vault IDs; an Asian bank can require APAC
vaults—without forking the asset or changing code paths. Everything is visible
in policy and headers.

Supply, — €.

Why banks can adopt (security & compliance deep dive)

No private keys at rest

Traditional tokenization leans on long-lived issuer keys inside HSMs—attractive,
breachable targets. ENI6GMA-G uses ephemeral RWP witnesses for both
payments and disclosures. The only privileged object is the morphism M,
i.e., code identity verified via measured boot and remote attestation. Even
if a device is seized, there is no master signing key to extract; past transcripts
remain unforgeable; future ones require fresh entropy and the correct code hash.
This collapses legal exposure around key custody and simplifies SOC controls.

Continuous reserve attestations

Reserves are not quarterly PDFs; they are per-window capsules. Each res, is
hashed, tagged, and chained under the accumulator A; signed by the committee.
External audit reports and inventory movements are linked by audit_ref; their
hashes become part of the public tape. A regulator can subscribe to headers,

36

compute the inequalities in real time, and set automated alerts for drift or
missing capsules—no privileged API required.

Symmetric-only, post-quantum friendly verification
All hot-path checks are hashes and XORs; the only asymmetric element is the
committee’s threshold signature over A;, which is swappable for lattice- or
hash-based PQ schemes without changing block structure. Banks gain long-
horizon cryptographic assurances and avoid retooling every time standardization
bodies update PQ recommendations. Parameter raises (e.g., longer digests) are
easy and low-risk.

Fine-grained compliance in pol,
Jurisdiction, asset class, risk ratings, travel-rule hints—these live as policy tags
in pol, that spending predicates must satisfy alongside RWP-PASS. Because pol,
is hashed into A;, enforcement is objective and replayable: a transfer either
satisfied the policy bits that were active at height ¢ or it didn’t. Banks can
update allow-lists, add sanctions designators, or raise KYC levels with explicit
activation heights; light clients can still verify with headers only.

Bank-grade fault domains and segregation
Custodian disclosure is segregated by vaultID and SKU; mint/burn windows are
rate-limited; and tolerance € is enforced on chain. These variables make oper-
ational risk quantized and analyzable: a single vault’s error cannot invalidate
global solvency, and breaches are machine-flagged with timestamps. Treasury
functions can attach operational KPIs (e.g., maximum drift minutes, SLA on
capsule timeliness) to vaultID and compare custodians on public data.

Cross-currency rails without reinventing FX
Because the stable code is the gram, the bank’s FX desk simply manages P.(t)
curves it already understands. Retail apps can show balances in local currency
while keeping settlement in grams; corporate treasuries can hedge with standard
gold forwards. Nothing in the ledger asks banks to trust a new oracle cartel;
any legally acceptable price source can be used, and discrepancies resolve via
arbitrage and redemption, not by governance edict.

Operational simplicity and audit trail
Daily ops reduce to three verifications: header signatures oy, reserve capsules
res; vs. supply, and local policy compliance at spend time. Every event leaves
a cryptographic breadcrumb retraceable with (A, mrk;) and a single Merkle
branch. Investigations don’t require subpoenaing private logs first; the public
tape narrows scope to specific windows and capsules before private records are
even consulted.

Customer protection and recourse
If a custodian is late or equivocal, rate-limiters and automatic locks in pol,
can freeze mint/burn capabilities above de-risked thresholds until valid capsules
resume, without halting peer-to-peer transfers. Consumers remain liquid; insti-
tutions see an explicit state flag on headers; and remediation steps are written
into policy rather than improvised, reducing legal ambiguity.

37

Additional equations (valuation, solvency, conversions)

Valuation across currencies

Ve(t) = q- G- P.(1), G =1 gram/token.

“V sub c of t equals q times G times P sub c of t; G equals one gram per
token.”
Aggregate solvency across custodians
Let C be the set of custodians, each with capsule mass massgj) and haircut (),
Supply, < > mass;’ (1—h)
u — (1 - .
PPly: = : G
jec
“Supply sub t is less than or equal to the sum over j of mass superscript j
sub t divided by G times one minus h superscript j.”
Tolerance band policy

Mass;

Supply; — a

< ¢, Mass, = Z massgj).
J

“Absolute value of Supply sub t minus Mass sub t over G is less than or
equal to epsilon; Mass sub t equals the sum over j of mass superscript j sub t.”
Attestation binding

res; = H(TAG[RES] || SKU || mass; || vaultID || audit ref 7,% = Transcribe(faq (2, T}, Qres) Qres) -
(_) t M Y aq I q

“res sub t equals the hash of tag R-E-S, S-K-U, mass sub t, vault I-D, audit
reference; tau superscript res sub t equals Transcribe of f sub M of x, T sub t,
q sub res with q sub res.”

Conversion routing between currencies a — b

By(t)
P,(t)

“Pay sub b equals Receive sub a times P sub b of t divided by P sub a of t.”

These identities—and their explicit, forms—are not “advice”; they are me-
chanical relations that any participant or regulator can recompute from public
data, ensuring that ENI6GMA-G’s peg, solvency, and FX conversions are trans-
parent, verifiable, and bank-operable.

Pay, = Recv, -

13. Discussion: Threats and Posture

¢ Relay/Replays: Fail outside the time window; 7 cannot be replayed
because it binds to (z,T), q).

38

e Precomputation: Entropy z is fresh and unpredictable; M is sealed.

e Committee Capture: Mitigated by threshold schemes, diverse opera-
tors, and on-chain rotation with slashing.

e Quantum Adversaries: Hash and XOR checks remain robust; commit-
tee signatures can use lattice or hash-based PQC.

e DoS: Fees price scarce resources; non-verifying floods are dropped before
inclusion.

Relay/replay threats are neutralized by the binding 7 <> (x,T,q). A cap-
tured transcript is only valid for the unique triple it was minted against; any
attempt to relay it later (different T) or elsewhere (different ¢) fails when valida-
tors recompute the probe set from (T, s, ¢) and find that the XOR equalities do
not cancel. In “tau is accepted only if x, T, and q match the original; otherwise,
the probe set changes and tau fails.” This property turns the network’s own
clock and randomness into a built-in replay firewall without tracking nonces or
keeping per-identity state.

Precomputation is blocked by fresh entropy x and the sealed morphism
M. Even if an adversary could predict ¢ (say, an invoice amount and recipient
script), they cannot predict the private orientation W = fa(x, T, q) because x
is sampled at session start and M is not extractable. Attempts to build rainbow
tables over plausible ¢ values or over future seeds s; are futile: the combination
with x and the device-bound code identity produces a one-time witness that
does not collide across events. The only viable path would be to compromise
the code identity M itself—addressed by measured boot, attestation, and self-
checksums—and even then, the damage is time-limited because past transcripts
do not help forge future ones.

Committee capture is modeled explicitly via threshold parameters (n,t) and
a compromise probability €. The header’s signature o; is valid only if at least ¢
out of n independent operators participate honestly to sign the accumulator A;.
Mitigations stack: diversify operators across jurisdictions and infrastructures;
rotate keys and membership on-chain; require public commitments for random-
ness beacons; and enforce slashing for equivocation or absenteeism encoded in
pol,. In risk terms, the residual chance that a captured committee can back-
date or bless a conflicting history within an application’s finality window A is
bounded by a tail term that decays with operator diversity and increases with
A; systems that need stronger guarantees simply raise A or the threshold ¢.

Quantum adversaries change the calculus for asymmetric cryptography, but
RWP’s verifier is symmetric-only. The hash H(-) that underpins com;, A,
and mrk; remains secure against quantum attack with a modest increase in di-
gest size (to offset Grover’s square-root speedup). The XOR-membership checks
retain their hardness as long as masks and probes derive from pseudorandom
functions instantiated over post-quantum-safe hashes. The only component that
must be upgraded proactively is the committee’s threshold signature; the de-
sign allows swapping to lattice- or hash-based schemes without touching block
structure or RWP validation, because o; signs a single value A; either way.

39

Denial-of-service (DoS) pressures are priced rather than wished away. Every
transaction must pay a fee-per-weight where weight is a consensus-defined
function of bytes on the wire and the number of per-input probes verified. Be-
cause RWP verification is constant-time and small, the fee schedule maps closely
to the real resource under contention: bandwidth and block space. Non-verifying
floods—packets that fail structural prechecks or domain tags—are dropped at
the edge before they consume validation cycles; nodes record short-lived “seen-
bad” notes to avoid re-requesting the same junk. Rate limits by peer and per-
subnet prevent a single network vantage point from saturating a victim’s view.

Network-level threats like eclipse and partition are mitigated by multi-
homing header sampling and the fork rule “longest valid chain by signed accu-
mulator steps.” Nodes maintain diverse peer sets and refuse to accept unbroken
sequences of headers sourced from a single neighbor without cross-checks; head-
ers carry compact signatures o; that can be validated in isolation. During
partitions, both sides may extend valid local chains; when connectivity returns,
the branch with more consecutive signed steps wins. Applications can adapt by
increasing the confirmation depth A during suspected partitions, a value that
is explicit and easy to reason about.

Side-channel and malleability classes are narrowed by design. The verifier for
7 executes fixed-width XORs with constant-time equality checks, avoiding early
exits and data-dependent branching. There is no signature malleability: any bit
flip in 7 breaks at least one predicate, and hence the transaction ID is stable
once formed. Scripts are pseudonymous and minimal, reducing the surface for
covert channels embedded in exotic opcode sequences; if richer programmability
is desired, it is gated behind policy flags in pol, so that all nodes agree on which
features exist at which heights.

Operational posture recognizes that entropy quality is security-critical.
The network continuously monitors beacon health—e.g., checking unpredictabil-
ity of s; across windows and requiring commit-reveal proofs from committee
members, with slashing for bias or failure. Endpoints run self-tests on local x
sources and fall back to mixed sources (device RNG plus beacon-derived salt)
to keep the effective min-entropy high. If measurements detect degradation,
policy can respond automatically: raise probe counts, shrink per-window lim-
its, or temporarily increase A until randomness quality is restored, all recorded
on-chain via pol,.

Lastly, the posture is auditable. Every assumption that matters—committee
keys and rotation epochs, fee schedules, randomness beacons, pruning horizons,
finality depth recommendations—is either committed in headers (A, com;, mrk;)
or encoded in on-chain policy pol,. External reviewers can replay history from
genesis with only public code and these values, recomputing RWP checks and
fork choices exactly as honest nodes did. That transparency is the ultimate
hedge: even if a new threat emerges, the community can measure its impact
precisely and adjust parameters within the same, small, verifiable envelope.

40

14. Conclusion

We propose a peer-to-peer electronic cash and settlement system that replaces
PoW with Proof-of-Knowledge anchored in time-keyed entropy and sealed
symmetric morphisms. Transactions are validated by ephemeral witnesses
and aggregated in a signed accumulator chain; double-spending is thwarted
without requiring energy-intensive mining. The design preserves pseudonymity,
enables light-client verification, and offers bank-grade reserve attestations for
a 1 g gold-backed stablecoin. In short, ENIGMA delivers the benefits of
trust-minimized digital cash with lower cost, faster finality, and stronger
operational privacy, and without burning watts for security.

ENI6MA replaces energy-dominated consensus with Proof-of-Knowledge
(PoK) anchored in time-keyed entropy and sealed, symmetric morphisms. In
practice, every spend is authorized by an ephemeral witness—a per-event
statement that never becomes a reusable secret—while blocks are chained by a
compact, threshold-signed accumulator that binds time, randomness, policy,
and content. This yields a ledger where correctness is checked with hashes and
XORs, not megawatts and nonces, and where security budgets are explicit
in parameters rather than implied by fluctuating hash markets.

The architecture separates cryptographic soundness from governance via
policy words embedded in headers. Cryptography answers “is this spend cor-
rect for this time and context?”; policy answers “is this spend permitted under
current rules?” This clean factoring lets regulators, custodians, and networks
evolve operational rules without disturbing the proof system or re-keying the
world, preserving both stability and upgrade velocity.

Because verification is symmetric-only and constant-time per input,
light clients achieve full-node assurance for the payments they care about with
tiny bandwidth: a header chain, a Merkle branch, and a local run of the RWP
checks. That makes secure mobile and embedded experiences a default,
not an afterthought, and broadens participation by eliminating heavyweight
node requirements and centralized RPC trust.

Privacy derives from non-reusability. No long-lived signature key ever
appears on chain; scripts are pseudonymous and rotate by default; transcripts
expire outside their windows. The result is operational privacy that resists com-
mon chain-analysis heuristics without relying on opaque mixers or proprietary
cryptography, while still enabling selective disclosure with single-fact proofs
anchored in public headers.

The system’s threat model is transparent and tunable. Where Bitcoin as-
sumes an honest majority of CPU power, ENIGMA assumes an honest threshold
of beacon committee members and the freshness of entropy. Both assumptions
are auditable on chain (signing participation, randomness proofs), and both
have direct mitigations: rotation, diversity, slashing, and parameter shifts
(confirmation depth, probe counts) that tighten guarantees without redesign.

By committing reserve capsules each window, ENI6MA-G turns solvency
into a machine-checkable inequality rather than a PDF promise. Anyone
can recompute circulating supply against committed mass and policy hair-

41

cuts from headers alone. This creates a credible, bank-operable stable-
coin—vpriced in grams, settled in seconds, and reconciled deterministically—without
hidden oracles or key-custody cliffs.

Economically, incentives align with real costs: bandwidth, storage, and avail-
ability are paid by simple, predictable fees; the beacon committee earns a
small, regulated service fee for producing unbiased seeds and signed accumula-
tors; and custodians can rebate fees when they publish timely reserve capsules.
No energy cost externality is required for security, and no advantage accrues to
specialized hardware—lowering barriers and improving geographical fairness.

In short, ENI6EMA delivers trust-minimized digital cash with lower cost,
faster finality, and stronger operational privacy, while enabling a bank-
grade, 1-gram-backed stablecoin whose solvency is public, continuous, and
cryptographically bound. It builds on well-understood primitives, keeps the ver-
ification surface compact and post-quantum friendly, and makes both payments
and disclosures verifiable by anyone, anywhere, from headers alone.

Contributions of ENIGMA Stablecoin E6G to the Industry

E6G introduces the gram code—one token equals one gram of vaulted
gold—as a neutral, apolitical unit of account that maps deterministically into
any fiat via public gold prices. This removes ambiguity around pegs, replaces
opaque “stability mechanisms” with physical collateral, and gives banks and trea-
suries a universal conversion rail that does not depend on a single sovereign
currency or a cartelized oracle.

E6G operationalizes continuous solvency. Each window, custodians pub-
lish a reserve capsule (SKU, mass, vault ID, audit reference) plus an RWP
transcript proving live control of sources. The capsule is committed into the
block’s content and accumulator, so supply-versus-reserves can be checked in
real time by wallets, auditors, and supervisors. Industry pain points—quarterly
lag, spreadsheet drift, and unverifiable claims—are replaced by a public, header-
bound tape.

E6G eliminates private keys at rest for issuance and disclosure. Instead
of HSM-guarded issuer keys that can leak or be coerced, mint/burn and attes-
tations are authorized by ephemeral witnesses bound to code identity and
time. Compromise does not cascade across epochs; past transcripts do not help
forge future ones; and legal/compliance exposure around key custody shrinks
dramatically.

E6G embeds compliance as code via on-chain policy words: jurisdiction
tags, KYC levels, allow/deny lists, travel-rule hints, fee schedules, mint/burn
tolerances, and committee membership/thresholds. Because policy sits under
the same accumulator and signatures as transactions, enforcement is objective
and replayable: a transfer either satisfied the active policy at height ¢ or it
didn’t, and any reviewer can confirm that outcome independently.

E6G provides seconds-class settlement with deterministic fork choice
(“longest valid chain by signed accumulators”), enabling card-like user experi-
ences without probabilistic six-block waits. Finality depth is an explicit param-

42

eter that businesses can right-size by risk tier; consumer payments can clear in
a few windows, while large treasury moves can wait deeper—one mechanism,
tunable assurances.

E6G upgrades SPV to first-class. A smartphone can verify a received
payment or a reserve claim with only headers and a Merkle path, performing
the very same XOR/hash checks as a full node. This collapses the trust surface
around hosted nodes and proprietary indexers and enables consumer-grade
self-custody without sacrificing safety or compliance.

E6G offers programmatic FX across currencies by routing through grams.
Pricing, hedging, and settlement become simple transformations on public data
(price of a gram in each currency), allowing banks to integrate E6G into existing
risk and treasury systems without inventing new valuation frameworks. Cus-
tomer apps can present local-currency balances while settling in grams under
the hood.

E6G advances sustainability and fairness. With no PoW and no stake-
rent feedback loops, there is no incentive to centralize around energy or capital
monopolies. Security flows from fresh randomness, code identity, and diverse
committees, which are auditable and rotate by rule. The cost drivers—bandwidth
and availability—are paid by users who consume them, rather than by society
through external energy burn.

E6G streamlines audit and supervision. Supervisors can follow headers,
verify committee signatures, read policy, and evaluate solvency inequalities in
near real time—mno privileged APIs, NDAs, or human-driven reconciliations.
This self-auditing posture shortens regulatory cycles, reduces uncertainty, and
raises the bar for all tokenized money: if it isn’t public and replayable, why trust
it?

E6G preserves user privacy with accountability. Pseudonymous, ro-
tating scripts and short-lived transcripts resist linkage by default, yet selective
disclosure is easy: a payer can reveal exactly one inclusion proof and noth-
ing else. This is the “minimum necessary” approach regulators increasingly
encourage—effective oversight, minimal data exhaust—made possible by the
ledger’s cryptographic structure.

Advantages over Bitcoin/ETH’s and PoW /PoS

ENI6MA reduces settlement latency from minutes (Bitcoin’s “10-minute blocks
and multi-block confidence) or probabilistic epochs (many PoS chains) to seconds-
class finality with a small, explicit confirmation depth. Users see payments
land quickly; merchants can release goods with high confidence; and institu-
tional flows can be tiered by value at risk without changing networks or assets.

ENI6MA slashes operating cost. Verification is a handful of hashes and
XORs per input; headers are tiny; SPV requires no archival sync. There is no
energy externality to recoup with fees, and no signature-verification storms
under complex scripts. This yields predictable fee/throughput curves and makes
high-integrity validation feasible on ordinary hardware, widening geographic and
socioeconomic participation.

43

ENI6MA is resilient to key loss and theft. Because no long-lived signing
keys appear on chain and authorization is event-bound, the blast radius of
endpoint compromise is sharply time-limited. In contrast, leaks of private keys
in PoW /PoS systems often imply irreversible asset loss or global re-key events.
The measurable surface in ENI6MA—code identity, entropy, and committee
signatures—is easier to monitor and remediate.

ENIGMA replaces the hash-power honesty assumption (PoW) and eco-
nomic majority/stake liveness assumptions (PoS) with two orthogonal
premises: entropy freshness and threshold honesty in a rotating commit-
tee. Both are observable (beacon proofs, signing participation) and parame-
terized (threshold ¢, committee size n, confirmation depth A), enabling formal
security budgets: aggregate forgery probability bounded by h - negl(\) plus a
tail for committee failure that decays with diversity and rotation.

ENI6MA is post-quantum friendly by construction. Its hot-path checks
use symmetric primitives whose security degrades gracefully under Grover-class
speedups (absorbed by larger digests). The only asymmetric element—the com-
mittee threshold signature—is modular and swappable for lattice or hash-based
schemes without touching ledger semantics or client flows. Bitcoin and many
PoS systems, by contrast, embed long-horizon dependence on ECDSA /EADSA
or pairing-based constructions that require deeper redesign for PQ migration.

ENI6MA improves privacy without secrecy theater. There are no static
keys to correlate, no signature malleability to exploit, and no on-chain public
keys that become heuristics glue. Short-lived transcripts bound to (z, T, q) give
replay resistance and unlinkability “for free,” while still allowing one-fact proofs
for compliance. PoW /PoS systems often depend on key rotation hygiene and
complex mixers to approach similar outcomes.

ENI6MA offers cleaner liveness under load. Deterministic ordering,
fixed windows, and small headers minimize propagation variance and stale-block
rates. PoW suffers naturally from variance in block discovery; PoS often faces
networking and view-synchrony challenges tied to validator set size and message
complexity. ENI6GMA’s fork choice (“longest valid by signed accumulators”) and
pipeline signing keep the control plane compact.

ENI6MA’s soundness reductions are tight and composable. Single-input
acceptance is negligible in A for any PPT adversary without M; union bounds
scale to many concurrent attempts; and replay/precompute are nullified by en-
tropy and time binding. PoW’s game-theoretic incentives are powerful but in-
direct; PoS’s slashing calculus is expressive but complex. ENI6MA’s calculus is
explicit: hashes, XORs, and thresholds with verifiable on-chain evidence.

ENI6MA-G delivers a stable, bank-operable instrument with continu-
ous, cryptographically bound reserves—something neither PoW nor PoS sup-
plies natively. Bitcoin provides bearer settlement but not solvency assurances
for a fiat-priced peg; PoS tokens can represent claims but rarely make reserves
public and machine-checkable each block. E6G’s gram code plus reserve capsules
closes this gap and bridges regulated finance with verifiable crypto.

ENI6MA trades PoW’s “permissionless energy race” for a governed ran-
domness /signing service. That introduces a new attack surface—committee

44

capture—that is mitigated (not eliminated) by size, diversity, rotation, slashing,
and public proofs. The crucial difference is observability: when the committee
fails, the failure is on chain; when hash-power colludes, the signal is the longest
chain itself. ENI6GMA embraces this trade with explicit parameters and live
telemetry so institutions can measure, insure, and hedge the residual risk.
Taken together, the record points the same way: ENIGMA /RWP provides
faster, cheaper, cleaner, and more auditable settlement while preserving
decentralization where it matters (anyone can verify; anyone can transact) and
enabling bank-grade stability through public, per-window reserve proofs. It
does not discard Bitcoin’s insight—timestamped public history—it generalizes
it: time is still the spine, but knowledge replaces work as the scarce resource.

Appendix X — RWP for E6G (ENI6MA-G)

A.1 Overview (what the proof is proving)

For E6G, every economically relevant action is authorized by a Proof-of-Knowledge
(PoK) instance derived from the Rosario-Wang framework with HoloMorphic
Entropy—based Witness Accumulation. Two PoK families are used:

e Payment PoK (spend of UTXO value): proves the payer possessed
the right ephemeral knowledge for the precise time and transaction con-
text—without revealing any reusable secret.

¢ Reserve PoK (custodian attestation): proves a custodian had live, im-
mediate control over reserve data (SKU, mass, vault) at the block’s time
and bound it to the header chain.

Both are verified publicly with symmetric operations only (hashes, XORs,
length-delimited concatenations, and a threshold signature over the block ac-
cumulator). Verifier time is linear in the number of probes, i.e., O(n),
where n is the probe count per input (or round count in the multi-round lin-
guistic model). Memory is O(1).

A.2 Notation (bridging the “language” model to E6G)

e Alphabets & morphisms (language view): Distinct alphabets ¥; and
bijective morphisms f;; prevent ambiguity and let us “shuffie” represen-
tations without loss. In E6G, these encode how device state and public
context are projected into transcript space.

e Session values (systems view):

— x: high-entropy session nonce sampled by the prover device.

— T canonical block/window time.

45

— ¢: public context tuple; for payments gy, includes referenced UTXO(s),
amounts, recipient script, chain ID, policy tags; for reserves g5 in-
cludes SKU, mass;, vaultID, audit _ ref, A;_;.

Sealed morphism: M (code identity) is the symmetric, sealed “pri-
vate morphism” shared by prover and verifier implementations (compiled
twins).

Ephemeral witness:

;=; f_{\mathcal M}(x, T, q)

* Transcript (one-time proof object):

7 = Transcribe(W, q)

Designated probes (multi-round checks): From (¢, T, st) the verifier
deterministically derives n probes {p;}? ;; the transcript carries masked

responses {p;}.

Membership test (accumulator in the linguistic sense):

n

A = A\ (XOR(p;, p;) = 0)

i=1

Acceptance (per input):

ACCEPT <= A =1 A PolicyOK(q)

A.3 Construction (how the prover forms 7)

1.

Bind time & context: Canonicalize ¢ (length-delimited fields; domain-
separated tags), fetch the beacon seed s for the current window, and
fix T within the allowed drift.

Sample entropy: Draw x + {0,1}" from a device RNG (optionally
salted with sr).

Project to witness: Compute W = fa(z,T,q) via a small cascade of
domain-separated hashes/PRFs and lightweight permutations (the “holo-
morphic” projection).

Derive probes: Verifier and prover independently derive {p;}_; from
H(TAG[PRB]||T||szllql2)-

Mask responses: Form p; = gy (W, i) @ p;, where gaq is a PRF keyed
by W (or a derived subkey). Only the p; values go on chain.

46

6. Emit transcript: 7 encodes: version, context digest H(g), probe count
n, P1,---,pPn, and small integrity bytes (e.g., a transcript MAC under
H (W) domain-separated, not revealing W).

Intuition: With the right W, the prover can cancel each p; via p;. Without
W, p; is indistinguishable from random, and the chance that all XORs cancel
is negligible.

A.4 Verification (algorithm and O(n) complexity)

Input: 7, public ¢, window parameters (T, s7), policy pol;.
Steps (per input):

1. Recompute ¢ from the transaction (or reserve capsule) bytes and policy
tags.

2. Derive probes {p;}?; from (¢, T, s7) exactly as the prover did.

3. For each i = 1..n do a fixed-width XOR and equality check: test XOR(p;, p;) =
0.

4. Compute A =)\, of the results (constant-time AND accumulation).

5. Check PolicyOK(g) (jurisdiction bits, timelocks, supply caps, SKU in-
tegrity, etc.).

Cost: Each probe is a constant-time XOR /equality over a fixed word size;
deriving the probe stream is one hash/PRF per index. Hence, time is O(n)
per input (linear in the number of probes/rounds); space is O(1) (streaming
derivation; no large tables).

‘Whole-transaction cost: For m inputs with probe counts n;, the verifier cost

is Z;nzl O(n;).
SPV: Add O(log K) hashes for the Merkle branch; PoK checking remains O(n).
A.5 Correctness, soundness, zero-knowledge-like properties

e Completeness: Honest provers possessing W = fa(z, T, q) produce p;
that cancel the derived p; for all 4, so A = 1 and ACCEPT holds (assuming

policy).
e Soundness (single input): For any PPT adversary without M and z,
Pr[ACCEPT] < negl(\) ~ 27F»
where k is the effective hardness (bits) per probe and n the probe count.

e Soundness (many opportunities): For h concurrent attempts (e.g.,
many inputs or many forged disclosures),

Pr[3 forged] < h - negl(X)

47

e Zero-leakage of reusable secrets: No long-lived key appears; 7 reveals
masked responses only, bound to (z,T,q). Replays fail because probes
change with T" and s7.

A.6 Reserve PoK for E6G (custodian side)

Reserve capsule (public commitment):

res, = H(TAG[RES] || SKU || mass; || vaultID || audit _ ref)

Reserve transcript: 77 = Transcribe(faq(x, T%, Gres)s Gres)
with gues = (resy, A;_1,issuerlD, policy bits).

Verification: Identical O(n) PoK checks as for payments, then policy: (i)
signer is an authorized custodian for vaultID; (ii) mass; changes are within toler-
ance ¢; (iil) full-supply inequality holds once included. Include (res;, 77°%) under
the block’s content hash and accumulator.

Security angle: Without W for this current T; and g5, a stale or synthetic
attestation fails the probe set. The PoK gives freshness and control; the
capsule gives binding.

A.7 Payment PoK for E6G (payer side)

For each input u consumed by a transaction, form gpay (UTXO id, amounts,
recipient script, asset tag = E6G, chain ID, policy bits, etc.), compute W, then
7P Nodes verify each input’s PoK in O(n), and enforce PolicyOK(gpay) (..,
jurisdiction tags, dust limits, timelocks). Value conservation and fee rules are
standard UTXO arithmetic, independent of PoK.

Composability: Multi-input transactions simply conjoin per-input A; =
1. Batching increases total cost linearly in) n;, with excellent cache locality
because XOR /equality are tight loops.

A.8 Probe generation and holomorphic accumulation

Probes implement the “multi-round linguistic verification” using a holomorphic
accumulation of entropy and context:

pi = H(TAG[PRB]||i||T ||sr || H(q))., pi = PRFw(i) & pi.
Equivalently, in the language view, each round R shuffles the active alphabet
by a morphism fr and checks membership of the “symbol” induced by W in the

appropriate subset; the AND over rounds is A. The computational footprint
remains O(n) because both p; and p; are stream-derivable.

48

A9

A.l
1.

Al

Complexity summary (payments, reserves, SPV)

Per input (PoK only): O(n) time, O(1) space.

Per block (K inputs total): Z]K:l O(n;) for PoK + O(1) for header
checks + O(K) to hash the body or O(K log K) if Merkle-building domi-
nates (parallelizable).

SPV verification: O(n) for PoK + O(log K) for the Merkle branch +
O(1) for the header signature.

Parameterization: Choose n and per-probe hardness k to achieve target
~ 27k false-accept probability while keeping per-input cost small (e.g.,
n = 8..16, k = 8..16).

0 Security reductions (outline)

From forgery to PRF /Hash distinguishers: A strategy that passes
A without W yields either (i) a predictor for PRFy, outputs, or (ii) a
correlation that violates the assumed pseudorandomness of H and probe
derivation.

Union bound to many attempts: For h attempts within a window,
total success probability increases at most linearly: h - 27%",

Freshness vs replay: Because probes depend on (7', st), any replay in a
different window faces an independent probe set; success collapses to the
negligible bound again.

Reserve integrity: Without control of g..s at time T, a custodian cannot
make an old mass claim pass new probes; the capsule binds disclosures to
headers, preventing equivocation.

1 Algorithms (concise pseudocode)

Prover (payments or reserves):

X
q -
T,sT
W «
for

RNG ()

CanonicalContext(...)

« CurrentWindow ()

f M, T, @

i in 1..n:

pi + H(TAG_PRB || i || T |l sT |l H(@®)
r_i + PRF_W(i) XOR pi

+~ Encode(version, H(q), n, r_1..r_n, integrity_bytes)

emit

Verifier (per input, O(n)):

49

q + RebuildContextFromTxOrCapsule(...)
T,sT « HeaderWindow()
acc « 1
for i in 1..n:
pi « H(TAG_PRB || i || T |l sT || H(q))
acc + acc AND ((pi XOR r_i) == 0)
return (acc == 1) AND PolicyOK(q)

A.12 E6G-specific invariants and equations

Supply < Reserves (by headers alone):

Supply, < &S?).l_h(j) G=1 K
pply, < Z e (), = 1 gram/token.

jec

Valuation across currencies via the gram code:

‘/c(t) = (tokens * G- Pc(t)

Final acceptance rule (block): all included inputs satisfy O(n) PoK
checks and policy; header carries a valid threshold signature over

A, = H(TAGIACC] || Ae_1 || com, | txh; || pol,).

A.13 Practical tuning (banks & wallets)

e Probe count n: Choose n for target risk per input (e.g., n = 12,k =
8 = 279); auditors can certify h - 27*" daily risk budgets.

e Windowing: 1-2 s cadence; SPV wallets see confirmations in A windows;
all math is constant-time per probe.

e Implementation: Keep XOR /equality constant-time; derive probes stream-
ing; pin domain tags; version transcript framing; log reason codes for pol-
icy failures (without revealing W structure).

A.14 Takeaway

For E6G, the Rosario-Wang Proof turns fresh entropy + time + public context
into a one-time witness whose public verification is O(n), side-channel-hard, and
post-quantum friendly. Payments and reserve attestations share the same veri-
fier, so the network’s “cash rail” and “solvency rail” are secured by one compact
primitive—easy to audit, easy to accelerate, and hard to cheat.

50

Appendix: Complete RWP/ENI6MA Equation Sheet
(with TTS)

Below is a compact, self-contained set of definitions and equations drawn from
the ENI6MA / E6G spec, each followed by a short text-to-speech (TTS) readout.

Notation & Operators

o $H(\cdot)$: collision-resistant hash.
“H of dot, a collision-resistant hash.”

e $\operatorname{PRF} K(\cdot)$: pseudorandom function keyed by K.
“P-R-F sub K of dot.”

e $|$: unambiguous, length-delimited concatenation.
“concatenate.”

e \oplus: XOR over fixed-width words.
“exclusive-or.”

o \bigwedge: logical AND across a set.
“logical and.”

e Domain tags $\textsf{TAG[*]}$: domain-separation constants.
“tag star.”

e Equality checks are constant-time unless otherwise noted.
“constant-time equality.”

Core Variables

e Session entropy $x \in {0,1}"{\kappa}$ (fresh per spend/attestation).
“x is kappa-bit fresh entropy.”

e Canonical window time T.
“capital T is the canonical time.”

e Beacon seed $s TS$.
“s sub T is the seed for time T.”

e Public context q (UTXO ids, amounts, scripts, chain ID, policy tags;
for reserves: SKU, mass, vault, audit ref, prior accumulator).
“q is the public context tuple.”

o1

e Sealed symmetric morphism (code identity) $\mathcal MS$.
“script M is the sealed morphism.”

Ephemeral Witness & Transcript

1. Witness binding

W = fm(,T,q).
“W equals f sub M of x, T, and q.”

2. Probe derivation
pi = H(TAG[PRB] || || T || sr || H(q))-
“p sub i equals hash of tag P-R-B, concatenate i, T, s sub T, and hash of q.”
3. Masked responses
“rho sub i equals P-R-F sub W of i exclusive-or p sub i.”

4. Transcript object

T = Encode(ver7 H(q), n, p1y---,Pn, int).

“tau equals encode of version, hash of q, n, rho one through rho n, and

integrity bytes.”

Verifier Predicate & Acceptance

5. Probe-wise XOR membership

A=A (p@pi=0).
i=1

“Lambda equals the logical and over i from one to n of p sub i exclusive-or

rho sub i equals zero.”

6. Input acceptance

92

ACCEPT <= A =1 A PolicyOK(q).
“Accept if and only if Lambda equals one and Policy-O-K of q.”

7. Transaction-level acceptance (multi-input)

>3

ACCEPT i < ((Aj=1A PoIicyOK(qj))) A ConserveVal.

Jj=1

“Transaction accept if and only if, for every j, Lambda sub j equals one and
Policy-O-K of q sub j, and conserve value holds.”

8. Value conservation

m n
Zinj = Zoutk + fee.
j=1 k=1

“Sum of inputs equals sum of outputs plus fee.”

Block Header Commitments

9. Capsule commitment

com, = H(TAG[CAP] || T, || H(TAG[SEED] || 5,) || aux;).

“com sub t equals hash of tag cap, T sub t, hash of tag seed with s sub t,
and aux sub t.”

10. Transactions fingerprint (concat form)

txh, = H(TAG[TXH] 7] --- HTK).

“t-x-h sub t equals hash of tag T-X-H concatenated with tau one through
tau K.”

11. Merkle root (pruning form)

mrk; = MerkleRoot(ry,...,7k).

“m-1-k sub t equals the Merkle root of tau one through tau K.”

12. Accumulator

93

Ay = H(TAG[ACC] || Ay—1 || comy || txhy || pol,).

“A sub t equals hash of tag A-C-C, previous A, com sub t, t-x-h sub t, and
pol sub t.”

13. Committee certificate

or = Signg(Ay).

“sigma sub t equals committee sign of A sub t.”

14. Fork choice rule

BestChain = arg max #{(As,00)}.

“Best chain equals the valid branch with the most signed accumulators.”

SPV & Inclusion

15. Merkle inclusion check

VerifyMerkle(r, path, mrk;) = true.

“Verify Merkle of tau, path, and m-r-k sub t returns true.”

16. SPV payment acceptance

ACCEPTS"Y <= (VerifyMerkle A A = 1 A PolicyOK(q)).

“S-P-V accept if and only if Merkle verifies, Lambda equals one, and Policy-
O-K of q.”

Stablecoin E6G (Reserves & Valuation)

17. Reserve capsule

res; = H(TAG[RES] || SKU | mass; || vaultID || audit_ ref).

“res sub t equals hash of tag R-E-S, S-K-U, mass sub t, vault I-D, and audit
reference.”

94

18. Reserve transcript

res

¢ = Transcribe(fM(x,Tt,qres), qres).
“tau superscript res sub t equals transcribe of f sub M of x, T sub t, q sub

res with q sub res.”

19. Solvency inequality (multi-custodian)

mass&j) -
Supply, < Z —— (1 — h(J)), G = 1 gram/token.
jec
“Supply sub t is less than or equal to the sum over custodians of mass sub t
divided by G times one minus haircut; G equals one gram per token.”

20. Tolerance band

Mass; .
a <

“Absolute value of supply minus mass over G is less than or equal to epsilon.”

Supply, —

21. Fiat valuation via the gram code

Vrc(t) = qtok'G'Pc(t)-

“V sub c of t equals token quantity times G times P sub c of t.”

22. Currency conversion through grams

Pay, = Recv, -

Pa(t)

“Pay sub b equals receive sub a times P sub b of t over P sub a of t.”

Security Bounds & Freshness

23. Per-probe false pass

Prlp; @ p; = 0 | guess] = 27

“Probability of a probe passing by guess equals two to the minus k.”

24. Single-input soundness

%)

Pr[ACCEPT] < 27%" = negl()).
“Acceptance probability is at most two to the minus k n; negligible in
lambda.”

25. Union bound over h attempts

Pr[3forgery] < h-27%",
“Probability of any forgery is at most h times two to the minus k n.”

26. Reorg tail (committee failure over Δ)

n
Prlreorg > A] < Z (n) ef(1—e)" ™,
=t
“Probability of a reorg at least delta is at most the sum from j equals t to n

of n choose j times epsilon to the j times one minus epsilon to the n minus j.”

27. Replay failure (window change)

Pr[A =1 on (T',sp/) # (T,s7)] ~ 27

“Probability Lambda equals one in a different window is about two to the
minus k n.”

Complexity & Resource Bounds

28. Per-input verifier

Terity(input) = O(n), Sverify(input) = O(1).
“Verify time per input is big O of n; space is big O of one.”
29. Per-block verification (K inputs)

K
Tverity (block) = Y O(n;) + O(1).
j=1
“Block verify time equals the sum over inputs of big O of n sub j, plus
constant.”

30. SPV cost

Tspy = O(n) + O(logK) + O(1).
“S-P-V time is big O of n plus big O of log K plus constant.”

96

Pruning & Archival

31. Header-only retention invariant

Vit >ty + A : retain (A, or, comg, mrks), prune bodies.

“For blocks deeper than delta, retain A sub t, sigma sub t, com sub t, and
m-r-k sub t; prune bodies.”

Deterministic Ordering & Conflict Rules

32. Deterministic ordering key

orderKey(Ti) = H(TAG[SORT] HTi)'

“Order key of tau i equals hash of tag sort concatenated with tau i.”

33. RBF admissibility (same inputs, higher fee)

Admitgpr <= Inputs identical A fee’ > fee.

“Admit replace-by-fee if and only if inputs identical and new fee greater than
old fee.”

Time & Window Discipline

34. Window pacing constraint

‘ T — Tiocal | < Driftmax~

“Absolute difference between T sub t and local time is at most drift max.”

35. Probe seed binding to window

p; depends on (T3, s¢, H(gq)) = no cross-window reuse.

“Probes depend on T sub t, s sub t, and hash of q; no cross-window reuse.”

57

References

Foundational cryptography & proofs of knowledge

1. Goldwasser, S., Micali, S., Rackoff, C. “The Knowledge Complexity of
Interactive Proof Systems.” STOC 85 / SIAM J. Comput. (1989). (Re-

searchGate)

2. Goldreich, O., Goldwasser, S., Micali, S. “How to Construct Random Func-
tions.” CRYPTO ’84. (SciSpace)

3. Fiat, A., Shamir, A. “How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems.” CRYPTO ’86. (NDSS Symposium)

4. Schnorr, C.-P. “Efficient Identification and Signatures for Smart Cards.”
CRYPTO 89 / J. Cryptology 1991. (jcr.cacrnet.org.cn)

Timestamping, Merkle trees, and early e-cash

5. Haber, S., Stornetta, W.S. “How to Time-Stamp a Digital Document.”
Journal of Cryptology, 1991. (Bitcoin Optech)

6. Merkle, R.C. “Protocols for Public Key Cryptosystems.” IEEE S&P, 1980.

(King’s College London)
7. Back, A. “Hashcash — A Denial of Service Counter-Measure.” 2002. (GitHub)

8. Nakamoto, S. “Bitcoin: A Peer-to-Peer Electronic Cash System.” 2008.
(timroughgarden.org)

Accumulators, headers, SPV, and UTXO practices
9. Bitcoin whitepaper (SPV section; block headers as hash chain). (See #8).

(timroughgarden.org)

10. Todd, P. “Merkle Mountain Ranges.” OpenTimestamps write-up, 2016.
(ResearchGate)

11. Biinz, B., Fisch, B., Szepieniec, A. “FlyClient: Super-Light Clients for
Blockchains.” IEEE S&P 2020 (preprint 2019). (ACM Digital Library)

Randomness beacons, seeds, and VRFs

12. Micali, S., Rabin, M., Vadhan, S. “Verifiable Random Functions.” FOCS
’99. (Trusted Computing Group)

13. RFC 9381 (IRTF CFRG). “Verifiable Random Functions (VREFs).” 2023.

(tex2e.github.io)

98

https://www.researchgate.net/publication/312492717_Dandelion_Redesigning_the_Bitcoin_Network_for_Anonymity?utm_source=chatgpt.com
https://www.researchgate.net/publication/312492717_Dandelion_Redesigning_the_Bitcoin_Network_for_Anonymity?utm_source=chatgpt.com
https://scispace.com/papers/dandelion-lightweight-cryptocurrency-networking-with-formal-48tn3c6mhj?utm_source=chatgpt.com
https://www.ndss-symposium.org/wp-content/uploads/usec2021_23007_paper.pdf?utm_source=chatgpt.com
https://www.jcr.cacrnet.org.cn/EN/10.13868/j.cnki.jcr.000290?utm_source=chatgpt.com
https://bitcoinops.org/en/topics/replace-by-fee/?utm_source=chatgpt.com
https://kclpure.kcl.ac.uk/portal/files/180741130/EIP1559.pdf?utm_source=chatgpt.com
https://github.com/bitcoin/bips?utm_source=chatgpt.com
https://timroughgarden.org/papers/eip1559.pdf?utm_source=chatgpt.com
https://timroughgarden.org/papers/eip1559.pdf?utm_source=chatgpt.com
https://www.researchgate.net/publication/225722958_Secure_Distributed_Key_Generation_for_Discrete-Log_Based_Cryptosystems?utm_source=chatgpt.com
https://dl.acm.org/doi/10.1145/359168.359176?utm_source=chatgpt.com
https://trustedcomputinggroup.org/resource/tpm-library-specification/?utm_source=chatgpt.com
https://tex2e.github.io/rfc-translater/html/rfc9381.html?utm_source=chatgpt.com

14. NIST Interoperable Randomness Beacons: NISTIR 8213 (draft) “A Refer-
ence for Randomness Beacons.” 2019. (NIST Publications, NIST CSRC)

15. NIST Beacon 2.0 posters/slides (architecture & pulse format). 2018-2020.
(NIST CSRC)

16. drand / League of Entropy: distributed randomness beacon (paper, docs,
and repo). 2019-2021. (NIST Publications, GitHub, Cloudflare)

17. SoK: “Decentralized Randomness Beacon Protocols.” 2022. (Research-

Gate)

Symmetric hashing & domain separation (post-quantum
friendly path)

18. NIST FIPS 202. “SHA-3 Standard: Permutation-Based Hash and XOFs.”
2015. (Trusted Computing Group)

19. O’Connor, J. et al. “BLAKE3: One Function, Fast Everywhere.” 2020.
(NIST Publications)
Fee markets & mempool policy

20. Buterin, V. et al. “EIP-1559: Fee market change for ETH 1.0 chain.”
2019/2021.

21. Corallo, M. et al. “BIP-125: Replace-By-Fee.” 2016.

Network privacy & transaction relay

22. Fanti, G. et al. “Dandelion: Redesigning the Bitcoin Network for Anonymity.”
2017. (NIST CSRC)

23. Venkatakrishnan, S.B. et al. “Dandelion+-+: Lightweight Cryptocurrency
Networking with Formal Anonymity Guarantees.” ACM SIGMETRICS/Performance
2020 (preprint 2019). (cmapscloud.ihme.us)

Threshold signatures, DKG, and committee attestation

24. Shamir, A. “How to Share a Secret.” Communications of the ACM, 1979.
(MIT CSAIL)

25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T. “Secure Distributed
Key Generation for Discrete-Log Systems.” EUROCRYPT ’99. (IETF
Datatracker)

26. Boneh, D., Lynn, B., Shacham, H. “Short Signatures from the Weil Pairing
(BLS).” ASTACRYPT 2001. (Harvard Dash)

99

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8213-draft.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/ir/8213/ipd?utm_source=chatgpt.com
https://csrc.nist.gov/CSRC/media/Presentations/The-NIST-Randomness-Beacon-2-0/images-media/SciDay18-poster-beacon-v20181022.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf?utm_source=chatgpt.com
https://github.com/drand/drand?utm_source=chatgpt.com
https://www.cloudflare.com/leagueofentropy/?utm_source=chatgpt.com
https://www.researchgate.net/publication/360888172_SoK_Decentralized_Randomness_Beacon_Protocols?utm_source=chatgpt.com
https://www.researchgate.net/publication/360888172_SoK_Decentralized_Randomness_Beacon_Protocols?utm_source=chatgpt.com
https://trustedcomputinggroup.org/resource/tpm-library-specification/?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/files/pubs/sp/800/185/ipd/docs/sp800_185_draft.pdf?utm_source=chatgpt.com
https://cmapscloud.ihmc.us/rid%3D1TFC0S4MX-1TRRJJB-3QQ/Grover96-A%20fast%20quantum%20mechanical%20algorithm%20for%20database%20search.pdf?utm_source=chatgpt.com
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Pseudo%20Randomness/Verifiable_Random_Functions.pdf?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/rfc9380/?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/rfc9380/?utm_source=chatgpt.com
https://dash.harvard.edu/bitstreams/7312037c-56f3-6bd4-e053-0100007fdf3b/download?utm_source=chatgpt.com

27.

Boldyreva, A. “Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme.” PKC
2003. (IETF Datatracker)

Post-quantum cryptography (upgradable committee signa-
tures)

28.

29.
30.

31.

NIST FIPS 203. “ML-DSA (based on CRYSTALS-Dilithium).” 2024.

(Trusted Computing Group)
NIST FIPS 205. “SLH-DSA (SPHINCS+).” 2024. (NIST CSRC)
RFC 8391. “XMSS: eXtended Merkle Signature Scheme.” 2018. (cy-

ber.gouv.fr)

Grover, L.K. “A Fast Quantum Mechanical Algorithm for Database Search.”
STOC 796. (arXiv)

Trusted execution / measured boot (for sealed morphism
deployments)

32.
33.

TCG. “TPM 2.0 Library Specification.” v1.59 (2019). (iacr.org)

NIST FIPS 140-3. “Security Requirements for Cryptographic Modules.”
2019. (iacr.org)

60

https://datatracker.ietf.org/doc/rfc9381/?utm_source=chatgpt.com
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/fips/140-3/final?utm_source=chatgpt.com
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-cible-cc-2019_45en.pdf?utm_source=chatgpt.com
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-cible-cc-2019_45en.pdf?utm_source=chatgpt.com
https://arxiv.org/pdf/quant-ph/9605043?utm_source=chatgpt.com
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf?utm_source=chatgpt.com
https://www.iacr.org/archive/pkc2003/25670031/25670031.pdf?utm_source=chatgpt.com

