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Abstract
We present a coherent, paragraph-style exposition of a membership-only
proof-of-knowledge protocol in which a prover, Alice, convinces an observer
that she knows a collection of secrets without revealing them. The scheme
relies on three intertwined ideas: (i) balanced partitions of a fixed alpha-
bet into six equal “leaves” per round; (ii) independent ring rotations that
eliminate positional anchors across rounds; and (iii) a private bijection that
permutes the six leaf labels for Alice alone. Together these choices throttle in-
formation leakage to at most log2 6 bits per round and, in expectation under
the randomizations, to essentially zero useful signal for predicting the next
character. The adversary’s task collapses to unstructured search over a vast
hypothesis space of the form |H| = 6!

(
U
6

)
= P (U, 6), where U = |Σ|` counts all

`-symbol strings over the alphabet Σ (with |Σ| = 72 in the canonical param-
eterization). For ` = 6 and six distinct secrets, |H| ≈ 7236 ≈ 2222, rendering
classical brute force infeasible and quantum brute force (Grover/BBBV) still
astronomically out of reach. We formalize the rounds-to-uniqueness require-
ment R & log6 |H| (about 86 rounds at baseline) and characterize how to reach
a formal, post-quantum 128-bit margin by minimally increasing the secret
length to L = 7, yielding |H| ≈ 2259 and

√
|H| ≈ 2129.5. The protocol illus-

trates a design space where combinatorics, symmetry, and information
throttling jointly enforce intractability.
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1. Introduction and Motivation
Traditional authentication reveals too much: a password, a biometric template,
or a static token leaves residue that adversaries can hoard, correlate, and replay.
Zero-knowledge (ZK) protocols resolve this tension cryptographically but often
depend on specialized algebraic assumptions and heavy machinery. The con-
struction analyzed here pursues a complementary path: a proof-of-knowledge
ceremony in which Alice answers only with leaf identifiers, never with sym-
bols or algebraic witnesses, while the system geometry ensures that those identi-
fiers are (in expectation) indistinguishable from uniform noise to an eaves-
dropper.

The core idea is simple. Each “board” partitions the alphabet Σ into six
equal leaves (zones). The board is balanced so that each leaf contains the
same number of symbols. Each round, the rings that order letters and digits
are independently rotated, and Alice’s private bijection permutes the six
leaf labels into private codewords. When challenged for the next character of a
secret, Alice responds only with the codeword naming the leaf containing that
character under the current board. To an observer, the codewords look like
independent throws of a fair six-sided die.

Our goal in this essay is to articulate the threat model, quantify the hy-
pothesis space the adversary must explore, derive information-theoretic
bounds on leakage per round, and connect these to lower bounds for classical
and quantum brute force. The result is a protocol whose security derives not
from algebraic trapdoors but from combinatorics without structure and
symmetry without bias.

2. Entities, Alphabets, and Boards
Let Σ denote a fixed alphabet of size |Σ| = 72, comprised of 30 lowercase letters,
30 uppercase letters, and 12 digits. A secret is a string C ∈ Σ` of length `.
The baseline parameter set fixes ` = 6, and Alice holds six distinct secrets
S = {C(1), . . . , C(6)} ⊂ Σ`.

A board for round i is a balanced partition

Πi : Σ→ {1, 2, 3, 4, 5, 6}, |Π−1
i (j)| = |Σ|/6 = 12 ∀j,

together with independent ring rotations applied to the subalphabets (e.g.,
lowercase, uppercase, digits). The rotations eliminate any positional relation
across rounds; the balancing eliminates marginal biases. Alice holds a private
bijection ϕ ∈ S6 that permutes the public leaf identifiers into her private
codewords.

When the verifier requests the next character of a given secret under board
Πi, Alice locates that character in Σ, looks up its leaf j = Πi(Ci), and replies
with the codeword Yi = ϕ−1(j) ∈ {1, . . . , 6}. No symbol of Σ is ever spoken;
only the codeword Yi appears on the wire.
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3. Threat Model and Problem Statement
Assume an observer (passive adversary) records the transcript of codewords
Y1, . . . , YR for R rounds, together with the sequence of public boards B =
(Π1, . . . ,ΠR). The adversary seeks to recover (i) the six distinct secrets S ⊂ Σ`

and (ii) Alice’s private bijection ϕ ∈ S6.
Formally, the hypothesis set is

H = {(S, ϕ) : S ⊂ Σ`, |S| = 6 distinct, ϕ ∈ S6}.

Given B and a transcript Y , the adversary’s task is to identify the marked
element (S?, ϕ?) ∈ H consistent with the transcript. Because all observable
outputs are leaf labels and not symbols, any progress requires exploiting sta-
tistical deviations of Y from uniformity or performing eliminative search
over H. The protocol is engineered so the former is absent and the latter is
astronomically expensive.

4. Combinatorics of the Hypothesis Space
Let U = |Σ|` denote the number of possible secrets of length `. With |Σ| = 72
and ` = 6, we have U = 726. Because Alice holds six distinct secrets and a
private bijection, the number of hypotheses is

|H| = 6!

(
U

6

)
= P (U, 6) = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5).

When U � 6, this is well-approximated by U6. Numerically,

|H| ≈ 7236 ≈ 236 log2 72 ≈ 2222,

using log2 72 ≈ 6.17. This count captures both the combinatorial choice of
six distinct secrets and the six-way label symmetry embedded by ϕ.

Two immediate consequences follow:

1. There is no sparse structure to index into: the hypothesis set is a flat
product of choices.

2. Any attacker who cannot extract stable information from the transcript
is reduced to unstructured search over H.

5. Per-Round Observations and Information Throt-
tling
In round i, Alice outputs a single label Yi ∈ {1, . . . , 6}. Under a balanced
partition and independent ring rotations, each symbol of Σ is equally likely to
reside in any leaf, so for an observer without ϕ,
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Pr(Yi = j | B) ≈ 1

6
for all j,

hence the per-round mutual information is bounded by the entropy of
a fair six-sided die:

I(C;Yi | B) ≤ H(Yi | B) = log2 6 ≈ 2.585 bits.

More sharply, because the rotations and balanced partitions wash out corre-
lations, the expected mutual information per round about the next character
(conditioned on the board) is essentially

E[I(Ci;Yi | B)] ≈ 0,

so transcripts look like i.i.d. draws from a uniform six-ary alphabet. Intu-
itively, the only way to distinguish competing hypotheses is to test whether their
implied leaf labels match the observed codewords across all rounds—that is,
to run a consistency oracle, not to learn from frequencies or correlations.

6. Eliminative Consistency and Rounds-to-Uniqueness
Suppose the adversary fixes a candidate hypothesis (S, ϕ). The probability that
it matches the observed codeword in one round is Pr(match) = 1/6 (absent
privileged information). Under independence, the probability that a wrong
hypothesis survives R rounds is (1/6)R. Hence the expected number of
survivors after R rounds is

E[survivors] ≈ |H|(1/6)R.

A natural uniqueness threshold is when the survivor count drops below
one in expectation:

|H|(1/6)R . 1 ⇐⇒ R & log6 |H|.

At baseline, log2 |H| ≈ 222 and log2 6 ≈ 2.585, so

Rmin ≈
⌈

log2 |H|
log2 6

⌉
≈
⌈

222

2.585

⌉
≈ 86.

This is a theoretical lower bound under perfect transcripts and inde-
pendence. In practice, transcripts are incomplete or noisy for the adversary,
lengthening the effective search.
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7. Classical Lower Bounds: Black-Box Search
In a black-box view, the only operation available to an adversary is to propose
a hypothesis (S, ϕ) and check it against the transcript. Let the per-candidate
check cost be O(R). Then the time to find the unique marked hypothesis is

Tclassical = Ω(R · |H|) = Ω
(
R · 7236

)
.

Even with a wildly optimistic sustained rate of 1015 checks per second, a full
scan of 2222 candidates would require on the order of

2222

1015 s−1
≈ 1.9× 1044 years,

vastly exceeding cosmological timescales. The key point is not the exact fig-
ure but the order of magnitude: the exponent in |H| dominates any plausible
constant-factor engineering improvements.

8. Quantum Lower Bounds: Grover/BBBV
Quantum search over an unstructured set yields at most a square-root speedup:
finding a marked element with bounded error requires Ω(

√
N) oracle calls for

N candidates. Translating to our setting,

Tquantum = Ω
(
R ·
√
|H|
)

= Ω
(
R · 7218

)
= Ω

(
R · 2111

)
.

Even if one supposes a fantastical 1018 fully error-corrected oracle queries
per second and ignores the massive overhead of reversible circuit construction
for the transcript-consistency oracle, the wall-clock time remains on the order
of

2111

1018 s−1
≈ 7.9× 107 years.

Parallel quantum fleets help only by √p: a trillion independent quantum
processors (already beyond any credible roadmap) reduces this figure by 106,
still leaving decades-to-millennia under heroic assumptions. With realistic error
correction (e.g., surface-code overheads of 103−106 physical qubits per logical
qubit and deep circuits per oracle query), the practical gap widens dramatically.

9. Security Levels and “Minimum Permutations”
for Intractability
Security targets are typically expressed in bits of work. A common classi-
cal target is 128-bit security, i.e., an attacker must perform on the order of
2128 steps. For quantum adversaries restricted to Grover-style search, a post-
quantum 128-bit target corresponds to requiring

√
|H| ≥ 2128, i.e.,
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|H| ≥ 2256.

9.1 Classical Target
At baseline,

|H| ≈ 7236 ≈ 2222 ⇒ classical margin ≈ 294 beyond 2128.

Thus the scheme already comfortably exceeds the classical 128-bit bar.

9.2 Quantum Target and Minimal Adjustment
To meet the stricter |H| ≥ 2256 quantum-aware bar with minimal change, in-
crease the secret length from ` = 6 to L = 7. With six distinct secrets,

|H| ≈ (|Σ|L)6 = |Σ|6L = 7242 ≈ 26L log2 72 ≈ 2259.

Then √
|H| ≈ 2129.5,

which cleanly exceeds the post-quantum 128-bit target. Two other knobs
can raise |H| without changing L: increase the number of secrets beyond
six or expand the alphabet |Σ| (e.g., adding symbols or modalities). All three
knobs can be tuned jointly for desired margins.

10. Rounds Budget and Stopping Rules
From Section 6, a natural stopping rule that aims for uniqueness in expectation
is

Rmin ≈
⌈

log2 |H|
log2 6

⌉
.

At L = 6, this yields Rmin ≈ 86; at L = 7, log2 |H| ≈ 259 gives

Rmin ≈
⌈

259

2.585

⌉
≈ 101.

These thresholds are idealized: they presuppose that the adversary pos-
sesses the full public board history and a clean transcript of every round. In
realistic deployments, partial visibility (e.g., hidden or delayed boards, sub-
sampling, or decoy rounds) increases the adversary’s uncertainty and effectively
lowers the number of real rounds needed to achieve the same safety.
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11. Why Structurelessness Matters
Many cryptanalytic successes exploit structure: linear approximations in block
ciphers, differential patterns in S-boxes, algebraic relations in group-based as-
sumptions, or patterns in side-channel leakage. The present construction delib-
erately suppresses structure at three levels:

1. Uniform marginals: by balancing each board, the distribution Pr(Y =
j) is flat, killing frequency analysis.

2. Cross-round independence: independent ring rotations prevent posi-
tional correlations from accumulating across rounds.

3. Label-switching symmetry: the private bijection ϕ means any fixed
relabeling produces observationally equivalent transcripts.

The net effect is that no gradient exists for the attacker: there is no
algebraic scaffold to climb, no statistical bias to amplify. The only viable tactic
is breadth-first elimination across a hypothesis set whose size is exponential in
both |Σ| and the total secret length under consideration.

12. Engineering Realities: Oracles, I/O, and En-
ergy
Even if one were to imagine a brute-force engine that could instantiate the
transcript-consistency check as an oracle, practical limitations loom:

• Reversible oracles for quantum search must embed the full consistency
logic—mapping a hypothesis and public boards to a match bit—within a
fault-tolerant circuit. This costs large numbers of logical qubits and deep
gate depth, multiplied by R.

• I/O and memory pressure for classical brute force grow with the need
to enumerate, store, or stream hypotheses; paging and bandwidth become
dominant bottlenecks long before arithmetic throughput saturates.

• Energy bounds (e.g., Landauer’s limit) and thermodynamic inefficien-
cies imply that, at cosmological scales of work, the energy bill alone be-
comes prohibitive—quite apart from the time dimension.

These are not security proofs; they are engineering sanity checks rein-
forcing the asymptotic arguments.

13. Variants, Extensions, and Defense-in-Depth
The protocol framework accommodates several hardening variants without
altering its conceptual simplicity:
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• Extended alphabets and modalities. Replace the 72-symbol alpha-
bet with multimodal symbol families (e.g., audio cues, icons), preserving
balanced partitions. Increasing |Σ| multiplies |H|.

• More secrets or longer secrets. Raising the number of distinct secrets
beyond six or extending length L increases the exponent linearly in the
chosen parameter.

• Board-hiding and decoys. If public boards are partially hidden, de-
layed, or salted with decoys, the adversary must guess extra degrees of
freedom, further inflating the search. For instance, if per-round there
are NB plausible board states from the attacker’s perspective, the at-
tack space multiplies by NR

B . With three independently rotated rings of
sizes 30, 30, 12, even simple rotation uncertainty can contribute factors
like (30 · 30 · 12)R = 10,800R to the adversary’s effective space, though the
exact factor depends on what is public versus private in a specific design.

• Rate limiting and ceremony mixing. Interleaving multiple secrets
and inserting dummy rounds complicate transcript alignment for an ob-
server.

These levers increase robustness without sacrificing the protocol’s intuitive
pedagogy.

14. Limitations and Assumptions
No construction is omnipotent; clarity about assumptions is essential:

• Randomness quality. Balanced partitions and independent ring rota-
tions must be generated with high-quality randomness to avoid subtle
biases.

• Transcript exposure. Our bounds assume the adversary can see the
boards and the codewords. If more is public, the analysis must account
for it; if less is public, security improves.

• Active adversaries. The analysis here targets passive eavesdroppers.
Active, man-in-the-middle settings require standard countermeasures (e.g.,
authenticated channels, challenge binding, and anti-replay tokens) to pre-
vent transcript splicing or relay attacks.

• Side channels. As with any interactive system, timing, power, or ema-
nation side channels require engineering discipline. The protocol’s virtue
is that its semantic output is low-bandwidth and uniform; nevertheless,
implementation must be hardened.
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15. Synthesis: Why Brute Force Is the Only Game
in Town
Collecting the threads:

1. The adversary’s goal is to recover (S, ϕ).

2. The hypothesis count is |H| = 6!
(
U
6

)
with U = |Σ|`.

3. Balanced partitions and ring rotations ensure Pr(Y = j | B) ≈ 1/6 and
E[I(C;Y | B)] ≈ 0; there is no statistically exploitable drift.

4. The only viable method is consistency elimination over H: expected
survivors |H|(1/6)R, with R & log6 |H| rounds for uniqueness.

5. Lower bounds force classical cost Ω(R|H|) and quantum cost Ω(R
√
|H|),

both astronomical at baseline parameters.

Therefore, the construction lives precisely where information theory and
computational lower bounds align: a regime of structureless combina-
torics in which neither clever algebra nor statistical learning can short-circuit
the exponential.

16. Practical Parameter Recipes
For practitioners wishing to tie security targets to parameters, the following
recipes are convenient:

• Given |Σ| and length L with six distinct secrets,

|H| ≈ |Σ|6L and log2 |H| ≈ 6L log2 |Σ|.

• Classical 128-bit security requires log2 |H| ≥ 128. With |Σ| = 72, this
is already satisfied for L = 6 by a margin of roughly 94 bits.

• Post-quantum 128-bit security requires 1
2 log2 |H| ≥ 128, i.e., log2 |H| ≥

256. With |Σ| = 72, this amounts to

6L log2 72 ≥ 256 =⇒ L ≥
⌈

256

6 log2 72

⌉
= 7.

• Rounds budget may be set via

Rmin ≈
⌈

log2 |H|
log2 6

⌉
,

then padded for engineering margin (e.g., noise, partial visibility, decoys).

These formulas cleanly separate symbolic design choices (alphabet size,
secret length, number of secrets) from ceremony design choices (round count,
board exposure), allowing system builders to trade off usability and security.
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17. Pedagogical Value
For naive audiences, the construction demonstrates how combinatorics and
symmetry can substitute for heavy algebra while still achieving formidable
security. Concepts like balanced partitions, entropy per round, and hypothesis
counting are concrete and visually intuitive (“six equal baskets each round; labels
shuffled privately”). For researchers, the protocol offers a compact laboratory to
test information-theoretic intuitions (leakage bounds, Fano-style reasoning)
alongside computational lower bounds (black-box and Grover limits).

18. Conclusion
We presented a paragraph-style, scientifically rigorous account of a membership-
only proof-of-knowledge protocol whose defense rests on three pillars: balanced
leaves, independent rotations, and a private bijection. These features
ensure that observed outputs are uniform and memoryless in expectation,
starving the adversary of exploitable signal and collapsing the attack surface to
unstructured search over a hypothesis space of size |H| = 6!

(|Σ|`
6

)
. At base-

line (|Σ| = 72, ` = 6, six secrets), |H| ≈ 2222, implying classical costs utterly
beyond reach and quantum costs still astronomical even under heroic assump-
tions. A minimal adjustment to L = 7 delivers a formal post-quantum 128-
bit margin. The scheme thus exemplifies a design philosophy—combinatorics
+ symmetry + information throttling—that yields powerful guarantees
without dependence on specialized algebraic hardness, and it provides a clear,
analyzable path for tuning parameters to desired security levels while maintain-
ing conceptual and implementation simplicity.

Why Cracking All Six of ENI6MA’s Secrets (and
the Private Map) Is Computationally Intractable
Audience: first-year undergrads in CS and psychology.
Goal: Why an attacker with no prior knowledge cannot feasibly brute-force
Alice’s six secrets (each 6 characters) and her private bijection map, even with
massive hardware, clever statistics, or machine learning.

1) What “computationally intractable” actually means (for us)

“Intractable” doesn’t mean impossible; it means that the time and resources
grow so explosively with problem size that no realistic computer (or fleet
of computers) can finish within the age of the universe. In cryptography, we
often summarize this by counting the size of the search space and comparing
it to feasible compute budgets. If the search demands, say, around 2200 or
1060 steps, it is effectively out of reach—no matter how clever your code is or
how many GPUs you rent—because physics, energy, and time set hard limits. In
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our ceremony, the intractability comes from a product of three design choices
that eliminate shortcuts:

1. Huge combinatorial space of possible secrets and private maps;

2. No structure to exploit (balanced leaves + opaque bijection + indepen-
dent ring rotations);

3. Tiny information per round (only “which leaf this round?”), which
forces an attacker to collect a lot of perfect observations just to narrow
the field.

Those three features make the best attack essentially a blind enumera-
tion/elimination game with a space so large that even perfect parallelism
barely dents it.

2) The puzzle the attacker must solve (with no head start)

Alice’s world has six leaves on the canvas. She holds six different secrets,
each a 6-character string. The characters come from three alphabet rings of
sizes [30, 30, 12], so there are 72 possible symbols per character. Alice also keeps
a private bijection that maps six codewords (her private synonyms) to the
six leaves. The attacker (call them Eve) wants everything: all six secrets
and the entire private map.

Let’s formalize the space Eve must search. The total number of possible
6-character strings is

U = 726.

“U equals seventy-two to the sixth.”
Numerically, U = 139,314,069,504 ≈ 1.393× 1011. Now, how many different

sets of six distinct secrets can Alice hold? If we care about the six as a set
(order doesn’t matter), that count is

(
U
6

)
. If we instead care about an ordered

6-tuple of distinct secrets (order does matter), that count is the permutation
number P (U, 6). The private map (the synonym-to-leaf pairing) has

6! = 720

“Six factorial equals seven hundred twenty.”
possibilities. A key identity links these counts:

6!

(
U

6

)
= P (U, 6) = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5).

“Six factorial times U choose six equals P of U six equals U times U minus
one down to U minus five.”

This identity tells us something very convenient: “(unordered six secrets
+ map)” and “(ordered six secrets, no map)” describe the same number
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of global possibilities. So, to recover all six secrets and the private map, Eve’s
exact hypothesis space is

P (U, 6) = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5) .

“The exact global count equals U times U minus one down to U minus five.”
Plugging in U = 726, this is astronomically large. Since U � 5, P (U, 6) is

essentially U6, i.e., 7236. Converting to “bits of difficulty” (a common crypto
yardstick), note that log2(72) ≈ 6.17, so

P (U, 6) ≈ 7236 = 236 log2 72 ≈ 2222.

“P of U six is about two to the two hundred twenty-two.”
To give a decimal feel, 2222 is about 6.0×1066; tighter arithmetic on P (U, 6)

yields ≈ 7.3× 1066. Any number in that band is comfortably “beyond the heat
death of the universe” for brute force.

3) Why there’s no shortcut: the system removes structure on purpose

Big search spaces are only scary if you can’t do better than blind search. In
many problems, attackers find patterns, symmetries, biases, or algebraic struc-
ture that shrink the space. Our ceremony deliberately destroys those footholds:

(a) Balanced leaves. After the rings rotate and the symbols are parti-
tioned, each leaf carries roughly equal “mass,” so a blind guess at the correct
leaf per round succeeds with probability about 1/6:

P (correct leaf by guess) ≈ 1

6
.

“Probability of the correct leaf by guessing is about one over six.”
(b) Opaque bijection (label symmetry). The six codewords Alice emits

are private names for leaves. Because the mapping from codewords to leaves is
unknown and could be any of the 6! permutations, every observed codeword
stream is equally compatible with 720 different global labelings. This is
classic label-switching: permute the labels and the data look the same.

(c) Independent modulo rotations of each alphabet ring. Before par-
titioning, each ring is re-indexed by its own independent offset, so any attempt
to “track a symbol family by relative index” collapses immediately:

j′ = (j + ∆r) mod Nr (for ring r of size Nr).

“Jay prime equals jay plus delta sub r modulo N sub r.”
Because each ring gets its own fresh ∆r every round, the in-ring positions

of letters are constantly re-labeled—in three separate ways at once. No cross-
round anchor survives.

(d) Minimal leakage per round. The verifier only needs a membership
fact (“was that the correct leaf this round?”). From the outside, the label Y
Alice emits has a marginal distribution that is essentially uniform over the six
codewords:
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P (Y = j) ≈ 1

6
for each j ∈ {1, . . . , 6}.

“Probability Y equals j is about one over six for each j.”
In information-theoretic terms, the observed label contains no directional

information about the true next character:

I(C;Y ) = 0 (in expectation under the design’s randomness).

“The mutual information between C and Y equals zero.”
This combination—balanced leaves, label symmetry, and re-indexed rings—makes

the label stream look like coin flips with six sides. Without extra knowledge
(a small dictionary, a known map, or side channels), there is nothing to model
and no bias to exploit; statistics and machine learning have no signal to
learn.

4) The best possible attack is elimination, and it needs ˜86 perfect
rounds

Since fancy statistics don’t help, the best Eve can do is enumerate hypotheses
and eliminate those that contradict observed rounds. Each observed round
rules out about five-sixths of the wrong hypotheses (because the wrong guess
matches the right leaf only one-sixth of the time). If Eve has a transcript of
R rounds (all from one continuous ceremony, with a fixed per-session map),
the expected number of wrong survivors is

E[survivors after R] ≈ P (U, 6)

(
1

6

)R
.

“Expected survivors equal P of U six times one over six to the R.”
To push the expected survivors below 1 (i.e., isolate a unique solution), set

the right-hand side to . 1 and solve for R:

R & log6

(
P (U, 6)

)
.

“R is at least log base six of P of U six.”
Using P (U, 6) ≈ 7236, we get

R ≈ log6(7236) = 36 log6 72 ≈ 36× 2.585−1 × log2 72 ≈ 36× 2.387 ≈ 86.

“R is about eighty-six.”
So even with perfect logging of boards and codewords from a single unin-

terrupted session, Eve needs on the order of eighty-plus rounds to isolate all
six secrets and the map. Real ceremonies are much shorter, and many systems
deny public access to either the full boards or the exact codewords—pushing
elimination even further out of reach.
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5) Big-O time and what that means in practice

Big-O hides constants and lower-order terms. Testing one hypothesis against R
rounds takes O(R) time (one membership check per round). There are P (U, 6)
hypotheses. So the overall work is

Checks = O
(
R · P (U, 6)

)
= O

(
R · 7236

)
.

“Checks scale like big-O of R times seventy-two to the thirty-sixth.”
What does 7236 look like as a time? Convert to bits: 7236 ≈ 2222. Suppose

an attacker can do 1015 hypothesis-checks per second (a wildly optimistic num-
ber—per hypothesis you must parse a board and apply a membership test!).
Even then, the time to scan 2222 candidates is

2222

1015
seconds ≈ 6× 1066

1015
= 6× 1051 seconds.

“Six times ten to the fifty-one seconds.”
Divide by ∼ 3.16× 107 seconds per year:

≈ 1.9× 1044 years.

“About one point nine times ten to the forty-four years.”
For comparison, the age of the universe is ∼ 1.4 × 1010 years. We are off

by thirty-four orders of magnitude. Even if you parallelize across a trillion
supercomputers, you only knock off 1012, which doesn’t move the exponents
meaningfully. This is what “intractable” looks like when you do the math.

6) “But what about quantum?” (Grover’s algorithm and why it still
fails)

Quantum search (Grover’s algorithm) can give at most a square-root speed-up
for unstructured brute force. That would reduce 2222 into roughly 2111. Still
gigantic:

√
7236 = 7218 = 2111.

“Square root of seventy-two to the thirty-six equals seventy-two to the eigh-
teen equals two to the one hundred eleven.”

2111 ≈ 2.5 × 1033. If you could perform a billion billion (1018) quantum
iterations per second (well beyond today’s capabilities for structured oracles and
error-corrected qubits), you’d still need

2.5× 1033

1018
= 2.5× 1015 seconds ≈ 7.9× 107 years.

“About seventy-nine million years.”
And this rosy estimate ignores the massive overheads for error correction,

memory, and oracle construction. In short: even quantum doesn’t make an
unstructured search over 7236 feasible.
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7) Why frequency analysis, correlations, and ML do not help

Frequency analysis and correlation hunting work only if the data stream carries
a consistent bias or stable signal. Our design removes those:

• Uniform marginals: Each observed codeword label Y is, in expectation,
equally likely among six choices:

P (Y = j) ≈ 1

6
.

“Probability Y equals j is about one over six.”

As the attacker gathers more data, the counts converge to one-sixth
each, which reinforces the lack of signal.

• Independent ring rotations: The indices within each alphabet family
are re-labeled independently each round, so index-based patterns don’t
persist:

j′ = (j + ∆r) mod Nr.

“Jay prime equals jay plus delta sub r modulo N sub r.”

• Label-switching symmetry: Any codeword-to-leaf permutation among
the six synonyms explains the same transcript equally well. No statistic
can pick the “true” labeling without external anchors.

• Zero mutual information: The observed label stream carries, in expec-
tation, no information about the true next character:

I(C;Y ) = 0.

“I of C semicolon Y equals zero.”

Because there is nothing to correlate with, even very smart models (deep
nets, HMMs, transformers) will converge to “uniform six-way dice” as the
best fit. You cannot learn what is not there.

8) What if the boards aren’t recorded? (It gets even worse for the
attacker)

So far we have been generous to the attacker by allowing them to see the board
each round—so they don’t also have to guess how the rings rotated. If, instead,
the boards are not observable (e.g., a secure attention window blocks screen
capture), then per round the attacker must also guess the triple of ring offsets
(∆lc,∆uc,∆ds). The number of such triplets is 30× 30× 12 = 10,800. Over R
rounds, that multiplies the hypothesis space by

(10,800)R.

“Ten thousand eight hundred to the R.”
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And if they must guess the balanced partition itself (which 12 of the 72
symbols landed in each leaf), the count explodes by a large multinomial factor,

72!

(12!)6 6!
,

“Seventy-two factorial over twelve factorial to the sixth times six factorial.”
which dwarfs everything. In other words, hiding the boards does not just

maintain intractability—it makes it much, much worse.

9) “Edge” assumptions and why they still don’t save the attacker

Let’s examine a few “what-ifs” attackers often ask about, and see why the in-
tractability remains.

What if the six secrets were not necessarily distinct?
Then the ordered count becomes U6 = 7236 exactly. Asymptotically, that’s the
same Big-O as before. No relief.

What if the attacker already knew a small dictionary of candidate
secrets?
If the dictionary had size D (rather than U), the joint search becomes P (D, 6)
instead of P (U, 6). If D is truly small (say, human-memorable phrases), this
matters—but that contradicts our stipulation of no prior knowledge. The
system’s security budget comes from secrets drawn from a massive, uniform
universe; if users pick from a tiny list and the attacker knows it, the math
changes. That’s a policy and hygiene issue, not a weakness of the projection-
and-bijection design.

What if you attack one secret at a time?
The “one-secret” space is U = 726, roughly 237 more modest—but you still have
to multiply across six secrets to get the whole set. The earlier rounds-to-
uniqueness derivation shows this clearly: you need about log6(U) = 6 log6 72 ≈
14.3 rounds to pin one unknown secret (+ map) and roughly 6× 14.3 ≈ 86 to
pin all six—the same number we derived from the full P (U, 6) analysis. Slicing
the elephant does not make it smaller.

What if the private map leaks a little?
A leak that halves the map uncertainty (from 6! to 360) hardly changes the
total since 6! is microscopic compared to U6. The map contributes only a small
constant factor to the full search, not the exponential bulk.

10) A physical reality check: time, energy, and memory

Even if you ignore software and just think physics, the search is dead on arrival.

• Time. We already computed the wall-clock under absurdly optimistic
1015 checks/second: ∼ 1044 years. That’s not a “tricky algorithm away”
from feasible.

• Energy. At room temperature, the Landauer bound for erasing one bit
is about kT ln 2 ≈ 3× 10−21 joules. Even if each hypothesis check “cost” a
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single bit erasure (an impossible fantasy), checking 2222 hypotheses would
take on the order of 1046 joules—absurd on planetary scales.

• Memory/I/O. Holding or streaming candidate tuples and boards at
these magnitudes saturates any realistic I/O bus. You cannot even name
the candidates fast enough, let alone test them.

Intractability here is not stylistic; it’s physical.

11) The role of ceremony design: keeping the problem “black-box”

Attackers win when they can translate a problem into a more structured one:
linear algebra over finite fields, lattice reduction, SAT to 2-SAT, etc. Our cere-
mony defends by being stubbornly black-box:

• The only thing you can do with a hypothesis is test it against this
round’s board and label—there’s no gradient, no algebra, no helpful sym-
metry except the one (label-switching) that blocks you.

• New rounds do not correlate: each uses fresh ring rotations and a
balanced repartition, so the signal does not “add up” across time except
in the trivial “eliminate the wrong ones” sense.

• Across different ceremonies, even the private bijection does not give
you a foothold: unless you sit through a single uninterrupted session,
you can’t transport constraints forward.

Systems that preserve this “black-box” nature of membership checks remain
resistant to clever optimizations. The fastest way is still the dumb way—and
the dumb way is functionally impossible.

12) Final Word

• Exact global search space for recovering all six 6-char secrets (distinct)
and the private map, with no prior knowledge:

P (U, 6) = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5) , U = 726.

“P of U six equals U times U minus one down to U minus five, where U
equals seventy-two to the sixth.”

Magnitude: P (U, 6) ≈ 7.3× 1066 ≈ 2222.

• Big-O time to brute-force:

Θ
(
7236

)
.

“Theta of seventy-two to the thirty-sixth.”
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• Expected wrong-survivor count after R rounds:

E[survivors] ≈ P (U, 6)
(
1/6
)R

.

“Expected survivors equal P of U six times one over six to the R.”

• Rounds-to-uniqueness (information lower bound):

R & log6

(
P (U, 6)

)
≈ 86 .

“R is about eighty-six.”

• Across ceremonies: frequency and correlation carry no signal,

P (Y = j) ≈ 1
6 , I(C;Y ) = 0,

“Probability Y equals j is about one over six; mutual information between
C and Y equals zero.”

• If boards are hidden: rotations alone multiply the space by (10,800)R,

(30 · 30 · 12)R = 10,800R.

“Ten thousand eight hundred to the R.”

These are the bones of the argument: an enormous, structureless space and a
per-round “bit budget” that is too small to chip it down within any sane number
of observed rounds.

13) One last mental picture (for memory)

Think of the attacker’s job as trying to identify a six-book anthology (the six
secrets), chosen from a library with 726 different titles, while the shelf labels
(the private bijection) are secretly permuted in 720 different ways, and the shelf
order (the rings’ indices) is re-shuffled independently before each glance. Each
time the attacker looks up, the librarian has rotated every shelf, re-balanced
the books evenly across aisles, and swapped the shelf-name placards behind
mirrored glass. The attacker can only ask one question per glance—“is the
anthology’s next book on this aisle right now?”—and gets only a yes/no. That
is not a solvable treasure hunt; it’s designed to be a needle-in-a-needle-factory
problem.

14) Bottom line

It’s computationally intractable to recover all six of Alice’s 6-character secrets
and her private map under the stated assumptions because:

1. The exact hypothesis space is P (U, 6) = U(U−1) · · · (U−5) with U = 726,
i.e., about 2222 candidates—astronomical.
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2. The ceremony exports no usable structure: balanced leaves keep per-
round chance at 1/6; independent ring rotations obliterate cross-round
anchors; the private bijection induces 720-way label symmetry; the ob-
served labels have uniform marginals; and I(C;Y ) = 0.

3. The best attack—elimination—requires around 86 perfect, continuous
rounds from a single session just to isolate the unique global solution;
real systems don’t grant that view.

4. Even quantum square-root speedups leave the cost at 2111, still completely
infeasible.

5. Hiding boards (or partitions) only multiplies the search by gigantic per-
round factors, making a bad situation worse for the attacker.

Intractability here is not a buzzword; it is a product of exact counts,
information limits, and physics. The design ensures that, for an attacker
with no prior knowledge, there is nothing to learn from watching many
ceremonies and nowhere to go but a brute-force search across a space that
might as well be infinite on human timescales.

A Formal Complexity-Theoretic Analysis of Membership-
Only Transcripts with Private Leaf Bijections and
Independently Rotating Alphabet Rings
Audience: University/Institute faculty; present a mathematically auditable ar-
gument that recovering the full secret-set and private bijection from passive ob-
servation is computationally intractable under standard black-box/Oracle and
information-theoretic models. We supply exact combinatorics, asymptotics via
Stirling, decision/communication lower bounds, and quantum query bounds.

0. Model and Objects

Let the finite symbol alphabet be a disjoint union of three “rings”

Σ = Σ1 ∪̇ Σ2 ∪̇ Σ3,
(
|Σ1|, |Σ2|, |Σ3|

)
= (30, 30, 12), |Σ| = 72.

• “Sigma equals Sigma one disjoint union Sigma two disjoint union Sigma
three, sizes thirty, thirty, and twelve; total seventy-two.”*

A secret is a word of length ` = 6 over Σ; hence the universe of secrets is

U := |Σ|` = 726.

• “U equals seventy-two to the sixth.”*
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Alice holds a set of six distinct secrets S = {s(1), . . . , s(6)} ⊂ Σ`, |S| = 6.
She also fixes a private bijection (the synonym map) ϕ : C → L between a
set of six codewords C and the six leaves L = {1, . . . , 6}. We write S6 for the
symmetric group on six elements; ϕ is an element of S6 once we identify C ∼= L.

A round i of an interactive ceremony is parameterized by public randomness

Bi =
(
∆

(1)
i ,∆

(2)
i ,∆

(3)
i , Πi

)
,

where ∆
(r)
i is an independent modulo rotation on ring r and Πi is a balanced

partition mapping Σ to leaves L so that each leaf receives |Σ|/6 = 12 symbols.
The next character to be proved is Ci ∈ Σ (the i-th character across the six
secrets under some public schedule). Its true leaf is Li := Πi(Ci) ∈ L. Alice’s
observable witness is the codeword

Yi := ϕ−1(Li) ∈ C.

The observer (attacker) sees Yi and either (a) the rendered board Bi (“board-
visible model”), or (b) not even Bi (“board-hidden model”). Throughout, rings
are independently rotated each round; partitions are fresh and balanced
each round.

The attacker’s target is the global hypothesis

H := (S, ϕ),

i.e., all six secrets and the private bijection.

1. Exact Hypothesis Count (All Six Secrets and the Map)

Let U = |Σ|` = 726. The number of 6-element subsets of U (unordered, distinct)
is
(
U
6

)
; the number of bijections is 6!. Hence

|H| = 6!

(
U

6

)
= U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5) = P (U, 6).

• “Six factorial times U choose six equals U times U minus one down to U
minus five, which is P of U comma six.”*

Lemma 1 (Counting identity). The global search space for
(S, ϕ) equals the number of ordered 6-tuples of distinct secrets,
i.e., P (U, 6).
Proof. Elementary bijection: choosing an unordered 6-set of secrets
times ordering by the private map labels (there are 6! orders) equals
choosing an ordered 6-tuple of distinct secrets. �

With U = 726, Stirling gives P (U, 6) = Θ(U6) = Θ(7236). Numerically,

U = 726 = 139,314,069,504, P (U, 6) ≈ U6 = 7236 ≈ 2222 ≈ 7.3× 1066.
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• “U equals one hundred thirty-nine billion . . . ; P of U six is about two
to the two-hundred twenty-two, about seven point three times ten to the
sixty-six.”*

2. Distributional Symmetries and Information Null Results

2.1 Balanced leaves and independence

By construction, Πi is a balanced partition; for any fixed symbol c ∈ Σ,

Pr(Li = ` | Ci = c,Bi) = 1
6 ∀` ∈ L.

• “Probability L sub i equals ell given C sub i equals c and the board equals
one over six.”*

Because each ring’s index is independently rotated (j′ ≡ j+ ∆
(r)
i mod |Σr|),

there is no cross-round positional anchor even within a ring.

2.2 Label-switching (private bijection)

Fix a prior on ϕ as uniform over S6. Then marginally, conditional on Bi,

Pr(Yi = y | Ci,Bi) = 1
6 ∀y ∈ C.

• “Probability Y sub i equals y given the character and the board is one over
six.”*

Lemma 2 (Mutual information zero, single round). Under
the uniform prior on ϕ, I(Ci;Yi | Bi) = 0.
Proof. For any c, Li is uniform on L due to balance; ϕ−1 is a
uniformly random permutation, hence Yi = ϕ−1(Li) is uniform on
C. Therefore the conditional distribution of Yi does not depend on
Ci given Bi. �

Across independent ceremonies, ϕ is unobserved and effectively re-randomized
(or at least remains opaque); frequencies over Y converge to uniform, blocking
correlation/frequency inference.

Remark. Within a single session where ϕ is fixed but unknown,
joint observations (Bi, Yi) constrain (S, ϕ) through consistency;
this supports hypothesis elimination but does not create a learn-
able bias (cf. §4).

3. Decision-Tree and Query-Complexity Lower Bounds

We treat recovery of H = (S, ϕ) as an unstructured search in a hypothesis set
H of size M := |H| = P (U, 6). Each candidate h ∈ H can be tested against a
transcript of R rounds by checking per-round consistency with (Bi, Yi); each test
costs O(R) (a constant-time membership per round). There is no algebraic
shortcut: the only operations available are evaluation of these consistency
predicates—equivalently, we are in the black-box/Oracle model.

21



3.1 Classical lower bound

In the decision-tree model, any deterministic algorithm that always finds the
unique h? ∈ H must, in the worst case, perform at least M − 1 inequality tests.
With randomization and two-sided error ≤ ε < 1/2, Yao’s minimax principle
implies an expected Ω(M) tests on some input distribution.

Theorem 1 (Classical black-box). Any classical algorithm that
recovers H with constant success probability using only hypothesis-
consistency queries requires Ω(M) queries; with per-query costO(R),
the time is Ω(R ·M) = Ω

(
R · 7236

)
.

3.2 Quantum lower bound

By the BBBV/Grover lower bound, unstructured search over M items requires
Ω(
√
M) quantum queries to an Oracle that recognizes the marked item.

Theorem 2 (Quantum black-box). Any quantum algorithm that
identifies H with constant success probability using a membership-
consistency Oracle needs Ω(

√
M) = Ω

(
7218

)
= Ω

(
2111

)
queries; with

per-query cost O(R), time is Ω
(
R · 7218

)
.

Both bounds certify that even in idealized Oracle models the search is infea-
sible at our magnitudes.

4. Sample-Complexity (Rounds-to-Uniqueness) Lower Bounds

Let the attacker receive R i.i.d. rounds {(Bi, Yi)}Ri=1 from the true H. Define
the hypothesis class H with uniform prior. Denote the observation channel as
P(B,Y )|H .

A standard multiple-hypothesis testing lower bound (via Fano) gives

Pe ≥ 1− I(H;BR, Y R) + log 2

log |H|
,

• “Error probability is at least one minus information over log of the hy-
pothesis count, up to a log two term.”*
where I(·; ·) is mutual information and log is base e or 2 consistently.

Per-round information cap. A single round reveals at most log 6 nats
(or log2 6 bits): the label Yi ranges over six equiprobable values once Bi is fixed.
Hence

I
(
H; (Bi, Yi)

)
≤ log 6 (nats) or ≤ log2 6 (bits).

• “Information per round is at most log six; in bits, log base two of six.”*

Aggregating over R independent rounds,

I
(
H;BR, Y R

)
≤ R log 6 (nats).
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• “Total information is at most R times log six.”*

Take logarithms base 2 for concreteness. With |H| = P (U, 6), and aiming at
Pe ≤ 1/3, Fano yields the necessary condition

R &
log2 |H| − 1

log2 6
.

• “R is at least log base two of the hypothesis size minus one, divided by log
base two of six.”*

Now

log2 |H| = log2 P (U, 6) =

5∑
k=0

log2(U − k) = 6 log2 U + o(1),

• “Log of P of U six is six times log U plus lower order terms.”*
and log2 U = log2(726) = 6 log2 72 ≈ 6× 6.17 = 37.0. Hence

log2 |H| ≈ 6× 37.0 ≈ 222.1 bits, log2 6 ≈ 2.585,

giving

R &
222.1

2.585
≈ 85.9 ≈ 86 rounds.

• “R is about eighty-six rounds.”*

Theorem 3 (Information lower bound). Any passive observer
that only sees (Bi, Yi) must acquire on the order of R ≈ 86 i.i.d.
rounds, from a single session with fixed ϕ, to reduce the Bayes error
below a constant and uniquely identify (S, ϕ). This bound is tight
up to constants and matches the heuristic elimination rate (1/6)R.

Heuristic agreement. Wrong hypotheses survive a round with probability
≈ 1/6, so after R rounds the expected survivors are |H|(1/6)R; “uniqueness in
expectation” requires (1/6)R . 1/|H| ⇒ R & log6 |H|, exactly the above.

5. Time Complexity (Work Factor) with Observed Boards

Per hypothesis h, testing against R rounds is O(R). Thus the time to brute-
force is

Tclassical(R) = Θ
(
R · |H|

)
= Θ

(
R · 7236

)
,

• “Time is Theta of R times seventy-two to the thirty-sixth.”*
and the quantum analogue is
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Tquantum(R) = Ω
(
R ·
√
|H|
)

= Ω
(
R · 7218

)
.

• “Quantum time is Omega of R times seventy-two to the eighteenth.”*

As orders of magnitude: 7236 ≈ 2222 ≈ 7.3 · 1066. Even at 1015 checks/s,
classical time is ∼ 1044 years ( “about ten to the forty-four years”). Quantum
square-root still leaves ∼ 2111 steps ( “two to the one hundred eleven”), on the
order of 108 years at impossible-throughput oracles.

6. Board-Hidden Model: Additional Combinatorics per Round

If Bi is not observable, the attacker must also hypothesize per-round ring rota-
tions and (if not derivable) balanced partitions.

• Ring rotations. Per round there are 30 · 30 · 12 = 10,800 offset triples
(∆

(1)
i ,∆

(2)
i ,∆

(3)
i ). Over R rounds this multiplies the space by

(10,800)R.

• “Ten thousand eight hundred to the R.”*

• Balanced partitions. The number of balanced allocations of 72 labeled
symbols into six bins of 12 is

72!

(12!)6 6!
,

• “Seventy-two factorial over twelve factorial to the sixth times six facto-
rial.”*
per round. Including this factor (if needed) renders the search super-
astronomical.

Thus, hiding boards cannot reduce intractability; it only exacerbates it.

7. Why Statistics/ML Cannot Help (Identifiability and Exchange-
ability)

Let D = {Yi} or {(Bi, Yi)} across many independent ceremonies (with ϕ effec-
tively randomized). Then for each round i,

Pr(Yi = j | Bi) = 1
6 ∀j,

• “Probability Y equals j given the board is one over six for all j.”*
and the joint law is exchangeable under S6 relabelings. Hence:

• Frequentist frequencies converge to uniform 1/6.
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• Any correlation between labels and features of Bi vanishes in expectation
(independent ring rotations destroy persistent features).

• The model is non-identifiable under label-switching: every parameter
point (S, ϕ) has 720 observationally equivalent relabelings in the passive,
cross-ceremony regime.

In the single-session regime, the only effective method is elimination by
consistency across many rounds; cf. §4.

8. Robustness to Side Assumptions

• Secrets with repetition. If repetitions were allowed, ordered count
becomes U6 = 7236; asymptotics unchanged.

• Attacker knows a dictionary of size D< U . Replace U by D; the
space becomes P (D, 6). Security then depends on dictionary entropy; this
is a policy constraint, not a structural weakness.
* Partial leakage of ϕ. Reducing the map space by a constant factor
(e.g., from 6! to 360) does not dent the U6 bulk.

9. Conclusions (Validated Claims)

1. Exact global search space.

|H| = 6!

(
U

6

)
= P (U, 6) = U(U − 1) · · · (U − 5), U = 726.

• “Hypothesis size equals six factorial times U choose six equals P of U six
equals U times U minus one . . . minus five.”*

2. Asymptotics and magnitude.

|H| = Θ(7236) ≈ 2222 ≈ 7.3× 1066.

• “About two to the two-hundred twenty-two, seven point three times ten
to the sixty-six.”*

3. Classical/quantum work factors.

Tclassical = Θ
(
R · 7236

)
, Tquantum = Ω

(
R · 7218

)
.

• “Classical Theta R times seventy-two to the thirty-six; quantum Omega
R times seventy-two to the eighteenth.”*

4. Rounds-to-uniqueness lower bound (Fano/heuristic agreement).
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R &
log2 |H|
log2 6

≈ 222.1

2.585
≈ 86.

• “R is about eighty-six.”*

5. Information null results across ceremonies.

P (Y = j | B) = 1
6 and I(C;Y | B) = 0,

• “Y is uniform one-sixth; mutual information between C and Y given the
board equals zero.”*
by balanced partitions, independent ring rotations, and label-switching.

6. Board-hidden multiplicative blowup.

extra factor (30·30·12)R = 10,800R (rotations), and possibly
72!

(12!)6 6!
per round (partitions).

• “Ten thousand eight hundred to the R; and seventy-two factorial over
twelve factorial to the sixth times six factorial.”*

All three pillars—exact combinatorics, black-box query lower bounds
(classical/quantum), and information-theoretic sample lower bounds—concur:
the passive recovery of the entire six-secret set and the private bijection is com-
putationally intractable under the stated ceremony, even granting the attacker
perfect logging of boards and codewords within a session. The ceremony’s design
(balanced partitions, independent ring rotations, private leaf bijection, minimal
witness) purposefully removes exploitable structure, reducing the adversarial
task to unstructured search/elimination in a hypothesis space of size ≈ 2222,
with a per-observation information budget of log2 6 bits—hence the ∼ 86-round
information lower bound and astronomically large time/work factors.

Quantum Can’t Crack It: Why Six Secrets and a
Private Map Stay Safe—even Against a Fleet of
Quantum Computers

Abstract (two voices in one)
For first-year undergrads (lay explanation): Think of Alice’s proof as a
game of “find the right region” on a board with six zones. Each round, letters
from three alphabets are re-shuffled across those zones, and each alphabet ring
is independently rotated so positions change unpredictably. Alice never reveals
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a letter—only a private codeword that means “the zone I saw my letter in.”
Because her six codewords are secretly paired with the six zones by a private
one-to-one mapping, anyone watching sees labels but can’t tell what they mean.
Over many rounds, this looks like a fair six-sided die roll—no patterns to learn,
no frequencies to exploit. Even a quantum computer can only try guesses much
faster, but the search space is so astronomically big that “faster” still means “far
beyond the life of the universe.”

For CS professors: We formalize the attack as black-box identification
of a marked element in a hypothesis set of size M = 6!

(
U
6

)
= P (U, 6) where

U = |Σ|` = 726. Per-round observables are membership bits under balanced
partitions with independent ring rotations, and public boards (if visible) provide
no learnable bias: I(C;Y | B) = 0. Classically, any algorithm requires Ω(M)
membership-consistency tests; quantumly, BBBV/Grover yields Ω(

√
M) queries

to any such oracle, with per-query cost Θ(R) rounds. For complete recovery
of all six secrets and the bijection with non-negligible success, information-
theoretic lower bounds show R & log6M ≈ 86 perfectly observed rounds from a
single session. Numerically,

√
M ≈ 7218 ≈ 2111 is intractable even with massive

parallel quantum hardware.

1) The Game Board (shared intuition)
Imagine a canvas split into six leaves/zones. The system uses three alphabet
rings (lowercase 30, uppercase 30, digits 12), for a total of 72 symbols. Each
round:

1. Independent ring rotations: every ring is re-indexed by its own ran-
dom offset;

2. Balanced partition: the 72 symbols are evenly distributed, 12 per leaf;

3. Private synonym map: Alice owns a secret one-to-one pairing between
six codewords and the six leaves.

Alice’s goal is to prove, round by round, that she knows the next character in
a hidden 6-character secret—without ever saying the character. She looks,
sees which leaf holds her next character on that round, and returns only the
private codeword for that leaf. Bob (the verifier) can check this because he
knows the temporary layout and the checking mask for the round. An observer
(even a quantum-empowered one) sees just a codeword per round, under a
mapping they do not know, against a layout that is re-randomized each round
and each session.

2) Counting the Thing to Break (both audiences)
Each 6-character secret is a string over 72 symbols, so the universe of possible
secrets is
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U = 726.

“U equals seventy-two to the sixth.”
Alice has six distinct secrets. If you don’t care about their order, the number

of possible 6-element secret sets is
(
U
6

)
. She also has a private bijection (a

permutation) between six codewords and the six leaves, so there are

6! = 720

“Six factorial equals seven hundred twenty.”
possible maps.

Conveniently, the exact size of the joint search space (all six secrets and
the private map) is

6!

(
U

6

)
= U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5) = P (U, 6).

“Six factorial times U choose six equals U times U minus one down to U
minus five, which is P of U comma six.”

With U = 726, this is essentially U6 = 7236 (because U � 5):

P (U, 6) ≈ 7236 = 236 log2 72 ≈ 2222 ≈ 7.3× 1066.

“P of U six is about seventy-two to the thirty-sixth, equal to two to the
two-hundred twenty-two, about seven point three times ten to the sixty-six.”

That is the single, precise number to keep in mind: about 2222 possibilities
for “six secrets plus the map.”

3) Why Statistics Don’t Help (uniformity and sym-
metry)
Every round, the layout is fresh and balanced across leaves; each ring is inde-
pendently rotated; and Alice’s codeword is drawn from an unknown per-
mutation of leaf labels. For any true next character C, the chance it lands in
any particular leaf ` is about

Pr(L = ` | C,B) ≈ 1

6
.

“The probability the character lands in any leaf is about one over six.”
Because the codeword is simply the private name for the chosen leaf, and

that mapping is a hidden permutation, the codeword the observer sees is, in
expectation, uniform among the six possibilities:

Pr(Y = j | B) ≈ 1

6
(j = 1, . . . , 6).
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“The probability the observed label equals j is about one over six.”
Information-theoretically, the mutual information between the next char-

acter and the observed label, conditioned on the board, is

I(C;Y | B) = 0 (in expectation).

“The mutual information of C and Y given the board equals zero.”
For undergrads: no pattern forms; counting labels just returns “one-sixth

each.” For professors: this is an exchangeable channel with S6 label-switching
symmetry and independently re-indexed rings; cross-ceremony identification is
non-identifiable without external anchors.

4) The Classical Baseline: Why It’s Already Im-
possible
If an attacker had perfect recordings of R consecutive rounds from one session
(so the per-session map stays fixed), the only viable method is elimination:
test a candidate hypothesis H = (S, ϕ) against each round and discard it on the
first mismatch. A wrong hypothesis “accidentally” agrees with a round only if it
picks the right leaf by chance, which is about 1/6. Thus the expected fraction
of wrong survivors after R rounds is (1/6)R. Starting with P (U, 6) ≈ 2222

candidates, the expected number of survivors is

E[survivors] ≈ P (U, 6)

(
1

6

)R
.

“Expected survivors equal P of U six times one over six to the R.”
To reduce that expected count below 1 (i.e., isolate a unique global answer),

you need roughly

R & log6

(
P (U, 6)

)
.

“R is at least log base six of P of U six.”
Plugging the numbers:

log6

(
7236

)
= 36 log6 72 ≈ 36× 2.387 ≈ 86.

“R is about eighty-six.”
So even in the best classical visibility (a long, uninterrupted session with

perfect board captures and exact codewords), you need about 86 rounds to
narrow down to a unique set of six secrets and the private map. Real ceremonies
are much shorter. Across multiple ceremonies the private labels re-scramble, the
rings re-index, and elimination does not accumulate.
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5) Enter Quantum: What Advantage Is Even Pos-
sible?
There are two widely cited quantum speedups:

• Shor-style (exponential) speedups for structured number-theoretic
problems (period finding in abelian groups). Not applicable here: there
is no hidden period or group structure to exploit; every round is a fresh,
balanced, randomized projection with private label permutations.

• Grover-style (quadratic) speedups for unstructured search. This
is the relevant model: given a black-box oracle that says whether a hy-
pothesis is the right one, a quantum computer can find the marked item
in about π

4

√
N oracle calls instead of N/2 classically.

Our problem is exactly an unstructured search over

M = |H| = P (U, 6) ≈ 7236 ≈ 2222

“M equals P of U six, about seventy-two to the thirty-sixth, about two to
the two-hundred twenty-two.”
hypotheses, where each oracle call asks: “Does hypothesis H = (S, ϕ) match
all R observed rounds?” That oracle itself must evaluate R membership checks
(one per round), so each quantum query costs Θ(R) operations.

Grover’s lower bound (BBBV/Zalka) says you still need on the order of√
M such queries to succeed with constant probability. Here, that is

√
M ≈

√
7236 = 7218 = 2111.

“Square root of M equals seventy-two to the eighteenth, equal to two to the
one-hundred eleven.”

Two massive observations follow:

1. A quadratic speedup over “impossible” is still impossible. 2111 is as-
tronomically large. Even if a futuristic quantum machine could execute
1018 (a quintillion) oracle calls per second—well beyond reasonable pro-
jections—the runtime would be

2111

1018
≈ 2.5× 1015 seconds ≈ 7.9× 107 years.

“About seventy-nine million years.”

2. An oracle call costs Θ(R), and to uniquely identify all six secrets and
the map you need R ≈ 86 rounds (information-theoretic lower bound).
Multiplying by R only worsens the estimate.

So in the best conceivable quantum framing (idealized oracle, error-free
qubits, no I/O overhead), the asymptotic lower bound already rules out practi-
cality by breathtaking margins.
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6) “What If I Don’t Have 86 Rounds?” (many marked
items and amplitude amplification)
Another way to see the quantum dead-end is via multiple marked items. If
you have only R observed rounds, many hypotheses survive: roughly

k ≈ M

(
1

6

)R
.

“k equals M times one over six to the R.”
Amplitude amplification then finds some surviving hypothesis in O

(√
M/k

)
queries, i.e.,

O
(√

M
M/6R

)
= O

(
6R/2

)
.

“On the order of six to the R over two.”
This looks smaller than

√
M , but remember your goal is unique iden-

tification of all six secrets and the map. With small R, you only find one
among many consistent hypotheses; you still haven’t cracked the real secrets.
To reduce to a single marked item you must crank R up until k ≈ 1, which is
precisely R & log6M ≈ 86. At that point, we are back to the

√
M ≈ 2111 query

complexity.

7) Why Shor-like, QAOA, and HHL-style Approaches
Don’t Apply

• Shor (period finding): requires a function with a hidden period over an
(abelian) group. Our per-round projection is fresh, the rings are inde-
pendently rotated, and the private mapping induces label symmetry,
not a stable period. There is no underlying group structure to exploit.

• QAOA/annealing on a cost graph: you could encode “consistency
with R rounds” as a giant SAT/Ising instance, but the landscape is es-
sentially random with exponentially many nearly orthogonal hypotheses.
Without structure (e.g., locality, low-treewidth), QAOA confers no proven
advantage over black-box bounds.

• HHL/linear systems: there is no linear system with sparse, well-conditioned
matrices lurking here; the target is a discrete combinatorial identification
with an oracle, not a linear algebraic solve.

The intractability comes from lack of exploitable structure plus an as-
tronomical hypothesis count; the usual quantum hammers have nothing
coherent to hit.
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8) Parallel Quantum Fleets: Why Billions of Qubits
Still Don’t Save You
Grover-type search parallelizes sublinearly. If you split the search across p
independent quantum processors, the per-machine work becomes

√
M/p, so

total time scales as
√
M/
√
p. With p = 1012 (a trillion machines—science

fiction), the speedup is only a factor of 106. Using the
√
M ≈ 2.5× 1033 oracle-

calls estimate:

2.5× 1033

√
1012

=
2.5× 1033

106
= 2.5× 1027 oracle calls.

“Two point five times ten to the twenty-seven oracle calls.”
Even at a (fantastical) rate of 1012 calls per second per machine with perfect

error correction, this is 2.5 × 1015 seconds—still tens of millions of years,
and we have ignored the cost of quantum error correction (which inflates
gate counts by many orders of magnitude) and oracle depth (˜R consistency
checks per query).

9) Physics and Error Correction: The Real-World
Tax
A brief, professor-level reality check:

• Surface code overhead: To achieve logical error rates low enough for ∼
1033 queries, you need astronomically many physical qubits per logical
qubit (often 103–106×), plus repeated syndrome extraction. A “billion-
qubit” device is tiny on this scale.

• Gate depth: Each oracle query computes R per-round membership
checks reversibly, with nontrivial Toffoli/T-depth. Multiplying by 2111

queries blows past any reasonable coherence budget—even before error
correction.

• Power and cooling: Large-scale cryogenic quantum fleets have strict
thermal budgets; simply clocking the required gates fast enough runs
into thermodynamic and engineering walls long before algorithmic lower
bounds are met.

The black-box lower bound tells you where the wall is. Physics tells you
that the doorway to the wall is itself unreachable.

10) The Probability View (quick sanity checks)
Two practical probabilities make the intuition stick:
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1. Random guessing across rounds: the chance that a non-member
passes R independent rounds is

Pr[pass] =
(1

6

)R
.

“Probability of passing equals one over six to the R.”
For R = 20, this is ≈ 1/3.6× 1015. For R = 40, ≈ 1/1.3× 1031. There is no

“learnable” drift to beat these odds because the labels are symmetric and the
rings are re-indexed.

2. Information per round: the maximum reduction in uncertainty per
round is at most log2 6 ≈ 2.585 bits:

∆Hmax = log2 6 ≈ 2.585 bits/round.
“Delta H max equals log base two of six, about two point five eight five bits

per round.”
To discharge the ≈ 222 bits of global uncertainty in P (U, 6), you need ≈ 86

rounds. Quantum measurement does not let you extract more than that from
a single classical round; your oracle can be queried coherently, but the BBBV
bound caps the benefit at a square root over the entire hypothesis set.

11) A Side Branch: If the Boards Are Hidden, It
Gets Harder (not easier)
We’ve been generous to the attacker by assuming they can record boards (lay-
outs) each round. If, instead, the system renders boards in a secure attention
window (blocking capture), the attacker must also hypothesize the ring rota-
tions (and possibly the balanced partitions):

• Ring-offset triplets per round: 30×30×12 = 10,800, so over R rounds
the search is multiplied by

(10,800)R.]

“Ten thousand eight hundred to the R.”

• Balanced partitions: if unknown, the number of allocations of 72 la-
beled symbols into six bins of 12 is

72!

(12!)6 6!
per round.

“Seventy-two factorial over twelve factorial to the sixth times six factorial.”
These factors are multiplicative on top of the P (U, 6) secrets+map space.

Quantum can’t “eat” this extra exponential either; there is still no structure—only
an even bigger unstructured search.
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12) One Page for Each Audience

12A) Undergrad one-pager (plain words + tiny math)
• How big is the haystack? All ways Alice could have six different 6-
character secrets (from 72 symbols each) and a private mapping of code-
words to leaves equals about 7236, which is roughly 2222, about 7× 1066.

P (U, 6) ≈ 7236 ≈ 2222.

“Seventy-two to the thirty-sixth equals two to the two hundred twenty-
two.”

• What does a quantum computer change? For totally unstructured
guessing, the best known quantum trick (Grover) speeds you up by a
square root. Square root of 2222 is 2111. That’s still humongous.

• Why can’t we learn patterns instead? Because each round, the
letters are reshuffled, each alphabet ring is independently rotated, and the
codewords are private labels. The label you see each round is like rolling
a fair six-sided die. No pattern sticks, and no average helps.

• How many rounds to be sure? To pin down all six secrets and the
map you’d need around 86 perfect rounds in a single session, which systems
don’t give you.

• Even a giant quantum data center? It would still take millions
of years on paper; in practice, building the oracles and handling errors
makes it far worse.

12B) Professor one-pager (formal bullets)

• Hypothesis size: M = |H| = 6!
(
U
6

)
= P (U, 6), U = 726. Stirling:

M = Θ(7236).

• Observations: Per-round board B (balanced partition + independent
ring rotations) and label Y . Uniform marginals: Pr(Y = j | B) = 1/6.
Exchangeable under S6; across ceremonies, non-identifiable.

• Information lower bound: I(H;BR, Y R) ≤ R log 6 bits; Fano ⇒ R &
log6M ≈ 86 for constant error.

• Black-box classical: Ω(M) consistency checks; time Ω(RM).

• Black-box quantum: BBBV/Zalka Ω(
√
M) queries; time Ω(R

√
M) ≈

Ω(R · 7218).

• Multiple marked items: with k ≈ M/6R survivors, amplitude ampli-
fication costs Θ(

√
M/k) = Θ(6R/2) until R drives k to O(1), whence it

reverts to Θ(
√
M).
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• No Shor-type structure: fresh randomized partitions, independent ring
rotations, private label symmetry. QAOA/HHL inapplicable.

• Parallelization: p quantum processors⇒
√
M/p scaling; with p = 1012,

still 2.5× 1027 queries.

13) AWalkthrough: “Quantum Eve” Tries Anyway
1. Data collection: Eve records R rounds from a single session: each board
Bi and each label Yi. Across sessions this doesn’t help—labels re-scramble
and rings re-index.

2. Oracle design: For a candidate H = (S, ϕ), she builds a reversible cir-
cuit that checks all R rounds for consistency and flips a phase if all match.
This is a single “Grover oracle” call—but it is expensive: each round re-
quires computing the true leaf for the next character and comparing with
ϕ(Yi), all reversibly.

3. Grover iterations: She must repeat the Grover diffusion Θ(
√
M) ≈

2111 times if R is large enough to leave only one survivor; otherwise,
with k survivors she needs Θ(

√
M/k) = Θ(6R/2) steps just to hit one

survivor—still not the guaranteed truth.

4. Error correction and coherence: Every iteration adds depth; to keep
logical error small across 2111 steps, the surface-code overhead skyrockets.
Billion-qubit labs do not come close.

5. Outcome: After all that, expected time is still millions of years in the
friendliest arithmetic; realistically, it is effectively infinite.

14) Closing Equation Deck
• Universe of 6-char strings:

U = 726.

“U equals seventy-two to the sixth.”

• Private maps:
6! = 720.

“Six factorial equals seven hundred twenty.”

• Global hypothesis count:

M = 6!

(
U

6

)
= P (U, 6) = U(U − 1) · · · (U − 5) ≈ 7236 ≈ 2222.

“M equals six factorial times U choose six equals P of U six, about seventy-
two to the thirty-sixth, about two to the two-hundred twenty-two.”
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• False-accept chance over R rounds:

Pr[random pass] = (1/6)R.

“Probability equals one over six to the R.”

• Information per round (bits):

log2 6 ≈ 2.585.

“Log base two of six is about two point five eight five.”

• Rounds to uniqueness (info bound):

R &
log2M

log2 6
≈ 86.

“R is about eighty-six.”

• Quantum query lower bound:
√
M ≈ 7218 = 2111.

“Square root of M equals seventy-two to the eighteenth, two to the one-
hundred eleven.”

• Multiple-survivor (amplitude amplification):

k ≈M/6R ⇒ queries ∼
√
M/k = 6R/2.

“k equals M over six to the R, so queries scale as six to the R over two.”

• Parallel Grover across p machines:

time ∼
√
M/p.

“Time scales like square root of M over p.”

15) Final Verdict (both audiences, one line each)
Undergrad / Lay Description: Quantum gives a square-root speedup, but
the haystack is so cosmic that even the square root is still basically infinity; and
the labels you see are as informative as fair dice.

Post Doctoral: With M = 6!
(

726

6

)
hypotheses and a per-round observa-

tion channel that is uniform under S6 label-switching with independent ring re-
indexing, we have I(C;Y | B) = 0 in expectation, an information lower bound
R & log6M ≈ 86 for unique identification in a single session, and black-box
lower bounds Tclassical = Ω(RM), Tquantum = Ω(R

√
M) ≈ Ω(R · 7218). Conse-

quently, even a fleet of large-scale error-corrected quantum processors
achieves only a negligible advantage: the problem remains computationally
intractable by design.
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Permutation Search Space Defined as 10x Man-
tissa

Definitions
• Alphabet size: 72 = 30 + 30 + 12

• Secret length: 6

• Universe of 6-char strings: U = 726

U = 139314069504

• Private map (bijection of 6 codewords to 6 leaves):

6! = 720

1) Classical search space for all six secrets + the
private map
We present three flavors:

A) Lower bound (no repetitions; all six secrets distinct)
This is what you had before (kept here for context). It equals the ordered falling
product:

Mdistinct = U(U − 1)(U − 2)(U − 3)(U − 4)(U − 5) = 6!

(
U

6

)
.

Exact integer (67 digits):

7310883635775654043105842610682888723294659550625996333083000832000

B) Tight “allow repetitions” bound (unordered multiset of
size 6 + map)
When repetitions are allowed and the six secrets are treated as a multiset, the
exact count with the private map is:

Mrep, exact = 6!

(
U + 5

6

)
= U(U + 1)(U + 2)(U + 3)(U + 4)(U + 5).

Exact integer (67 digits):

7310883637349985407323060214097837638887415242541357398255447572480
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This is the tight upper bound for “allow repetitions” when you model
the six secrets as an unordered multiset (repetition allowed) and
multiply by the 6! private maps.

C) Very loose upper bound (ordered 6-tuple with repetition
× map)
If you simply allow any ordered 6-tuple of secrets (repetition allowed) and then
multiply by the map, you get

Mrep, loose = 6!U6.

Exact integer (70 digits):

5263836218325230202131351810633731616026983108257607972605138168709120

This is a conservative (loose) upper bound; it overcounts heavily
relative to the exact multiset model.

2) Quantum lower bound (Grover/BBBV):
√
(search

space)
For an unstructured search of size M , any quantum algorithm needs on the
order of

√
M oracle queries (and each query here embeds all per-round con-

sistency checks). Below are the square roots for the exact “allow repetitions”
bound and for the very loose bound, plus the “optimal” Grover iteration count
d(π/4)

√
Me.

A) For the tight allow-repetitions exact space Mrep, exact

b
√
Mrep, exactc, d

√
Mrep, exacte (34 digits each):

floor = 2703864574521066024930942124130308
ceil = 2703864574521066024930942124130309

Grover “optimal” iteration count d(π/4)
√
Mrep, exacte (34 digits):

2123610270904268182573562460690868

B) For the very loose space Mrep, loose = 6!U6

b
√
Mrep, loosec, d

√
Mrep, loosee (35 digits each):

floor = 72552299883085926900060034773643467
ceil = 72552299883085926900060034773643468

Grover “optimal” iteration count d(π/4)
√
Mrep, loosee (35 digits):

56982443078436588484446899996258463
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3) Order-of-magnitude summaries in 10ˆx form
Below are the same quantities summarized as mantissa × 10ˆexponent and,
where helpful, also as just 10ˆx scale.

Classical spaces
• Mdistinct = U(U − 1) · · · (U − 5)

– ≈ 7.310883635775654× 1066

– log10Mdistinct ≈ 66.8639698714789

• U6 = 7236 (reference)

– ≈ 7.310883636562820× 1066

– log10 U
6 ≈ 66.8639698715257

• Mrep, exact = U(U + 1) · · · (U + 5) (tight allow-repetitions)

– ≈ 7.310883637349985× 1066

– log10Mrep, exact ≈ 66.8639698715724

• Mrep, loose = 6!U6 (very loose upper bound)

– ≈ 5.263836218325230× 1069

– log10Mrep, loose ≈ 69.7213023679569

Interpretation: the tight “allow repetitions” space sits just above
U6 (they differ by a tiny factor

∏5
k=1(1 +k/U) ≈ 1 +O(1/U)). The

“very loose” space multiplies by an extra 720 and is roughly three
orders of magnitude larger (∼ 1069.72 vs. ∼ 1066.86).

Quantum square roots (Grover/BBBV)

•
√
Mrep, exact

– ≈ 2.703864574521066× 1033

– log10

√
Mrep, exact ≈ 33.4319849357862

•
√
Mrep, loose

– ≈ 7.255229988308592× 1034

– log10

√
Mrep, loose ≈ 34.8606511839785

• Grover iterations d(π/4)
√
Me scale:

– For Mrep, exact: ≈ 2.123610270904268× 1033

– For Mrep, loose: ≈ 5.698244307843659× 1034
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Quick “at a glance” bounds
• Tight allow-repetitions (multiset + map):

Mrep, exact = U(U + 1)(U + 2)(U + 3)(U + 4)(U + 5)

Raw:
7310883637349985407323060214097837638887415242541357398255447572480
Order: ≈ 7.31× 1066

• Lower bound (distinct only):
Mdistinct = U(U − 1) · · · (U − 5)
Raw:
7310883635775654043105842610682888723294659550625996333083000832000
Order: ≈ 7.31× 1066

• Very loose repetitions (ordered 6-tuple × map):
Mrep, loose = 6!U6

Raw:
5263836218325230202131351810633731616026983108257607972605138168709120
Order: ≈ 5.26× 1069

• Quantum lower bound (Grover/BBBV):√
Mrep, exact ≈ 2.70× 1033,√
Mrep, loose ≈ 7.26× 1034.

Bottom line (why the “allow repetitions” case doesn’t change
feasibility)
Allowing repetitions increases the hypothesis count from the distinct falling
product U(U − 1) · · · (U − 5) to the rising product U(U + 1) · · · (U + 5). For
our U = 726, both sit tightly around 7.31 × 1066 total possibilities for “six
secrets plus the private map.” The quantum lower bound still requires on the
order of

√
M oracle queries—i.e., around 1033 coherent queries even in the tight

allow-repetition model—placing the attack far beyond any realistic (or even
science-fiction) capability.

Why Problem Space Explodes When Each Secret
Grows from 6 to 12 Characters

Overview
In this proof-of-knowledge design, Alice holds six distinct secrets, each a
string over an alphabet Σ of size |Σ| = 72. A public “board” partitions Σ
into six balanced leaves every round; ring rotations and Alice’s private bijection
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make observed answers look like uniform six-way symbols. An adversary ob-
serving transcripts must therefore do unstructured search over all candidate
sextuples of secrets and a label permutation.

Let the length of each secret be L. The key count is the hypothesis space

|HL| = 6!

(
UL
6

)
≈ U6

L with UL = |Σ|L = 72L,

where the approximation uses UL � 6. Thus

|HL| ≈ (72L)6 = 726L = 2 6L log2 72.

At baseline L = 6: |H6| ≈ 7236 ≈ 2222.
At extended L = 12: |H12| ≈ 7272 ≈ 2444.

The jump from L = 6 to L = 12 therefore turns the search space from
roughly 2222 to roughly 2444, i.e., it squares the already-astronomical space.

The Square Law: Doubling Length Squares the
Search Space
Because UL = 72L, doubling L squares UL. Since $ |\mathcal{H}_L| \approx
U_Lˆ6$, we get

|H12|
|H6|

≈ (U2
6 )6

U6
6

= U6
6 = |H6|.

Equivalently,

|H12| ≈
(
|H6|

)2
.

So the adversary’s candidate set is squared when each of the six secrets
doubles in length from 6 to 12. If |H6| was already beyond the reach of realistic
computation, |H12| is the square of “beyond reach.”

Numerically,

|H6| ≈ 2222 ⇒ |H12| ≈ 2444.

This alone explains the “explosion”: every brute-force approach (classical or
quantum) faces an additional factor of 2222 in work compared to the already
infeasible L = 6 case.

Per-Round Information Is Capped; Needed Rounds
Double
Each round reveals at most log2 6 ≈ 2.585 bits (a six-way label), and by design
the expected mutual information about the next character is essentially 0 due to
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balanced partitions and rotations. To isolate a unique hypothesis in expectation,
the adversary needs about

Rmin(L) ≈
⌈

log2 |HL|
log2 6

⌉
=

⌈
6L log2 72

log2 6

⌉
.

Since log2 72/ log2 6 ≈ 2.387,

Rmin(L) ≈ d14.32Le.

Therefore,

• L = 6⇒ Rmin≈ 86 rounds,

• L = 12⇒ Rmin≈ 172 rounds.

So theminimum rounds roughly double when the length doubles. That’s
intuitive: you have twice as many symbols’ worth of uncertainty to discharge,
and each round still only leaks a bounded amount.

Classical Cost: From Astronomical to “Squared
Astronomical”
In a black-box model, the best classical strategy is eliminative consistency: pro-
pose (S, ϕ), check it against the transcript (cost O(R)), repeat. The runtime
is

Tclass(L) = Ω
(
Rmin(L) · |HL|

)
.

Comparing L = 6 to L = 12,

Tclass(12)

Tclass(6)
≈ (2Rmin(6)) · (|H6|)2

Rmin(6) · |H6|
= 2 · |H6| ≈ 2 · 2222 = 2223.

So classical work multiplies by about 2223—a factor of roughly 1067. If
L = 6 already required on the order of 1044 years at absurdly optimistic 1015

checks/second, multiplying by 1067 pushes the wall-clock into a regime that
makes cosmological timescales look negligible.

The constant 6! from the private bijection sits in the noise compared to these
exponents; the blow-up is governed by 726L.

Quantum Cost: Grover Still Drowns
For unstructured search, Grover/BBBV gives at best a square-root speedup.
The quantum cost is
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Tquant(L) = Ω
(
Rmin(L) ·

√
|HL|

)
= Ω

(
Rmin(L) · 723L

)
.

Hence the ratio

Tquant(12)

Tquant(6)
≈ (2Rmin(6)) · 7236

Rmin(6) · 7218
= 2 · 7218 = 2 · 218 log2 72 ≈ 2112.

So even with a hypothetical ideal quantum machine, the jump from L = 6
to L = 12 imposes another factor of ≈ 2112 in runtime. And this ignores
the severe realities of fault-tolerant quantum computing: the reversible oracle
that checks a hypothesis across R rounds must itself be built from deep, error-
corrected circuits with large logical-qubit footprints; doubling L doubles the
number of rounds to encode and typically worsens depth and width.

One striking perspective: at L = 12,√
|H12| = 2222,

which equals the entire classical search space at L = 6. In other words, the
quantum attacker at L = 12 faces (up to linear factors in R) the same exponent
that already made the classical attack at L = 6 impossible.

Security Levels: Massive Headroom, Even Post-
Quantum
Security targets are often quoted as “bits of work.”

• Classical 128-bit target: need |HL| ≥ 2128.
At L = 12, |H12| ≈ 2444 — a margin of 2316 beyond the 128-bit bar.

• Post-quantum 128-bit target: need
√
|HL| ≥ 2128 ⇒ |HL| ≥ 2256.

At L = 12,
√
|H12| ≈ 2222 � 2128, giving a 294 headroom over the post-

quantum 128-bit bar. (By contrast, L = 6 meets classical 128-bit but sits
below the formal post-quantum 128-bit line; increasing to L = 7 crosses
it. Jumping to L = 12 is far beyond that threshold.)

Thus, doubling length delivers not a marginal improvement but a regime
change: both classical and quantum brute force become even more fantastically
implausible, with comfortable formal margins.

Why This Happens: Entropy Grows Linearly, Search
Grows Exponentially
Per round, the transcript can leak at most log2 6 bits. Meanwhile, the uncer-
tainty the attacker must discharge is
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log2 |HL| ≈ 6L log2 72 ≈ 37.02L bits.

Therefore the required rounds scale linearly with L: Rmin(L) ≈ 14.32L.
But the work grows like $ |\mathcal{H}_L|\approx 72ˆ{6L}$, i.e., exponen-
tially in L. This mismatch—bounded per-round leakage versus exponen-
tial hypothesis growth—is the engine of the explosion. Doubling L doubles
the bits to be discharged and the rounds, but squares the search space.

Engineering Reality: Oracles, I/O, and Energy
Get Worse Too
Even if we ignore asymptotics, practical costs balloon:

1. Oracle construction. The reversible oracle (quantum) or the consis-
tency checker (classical) must encode R rounds; at L = 12, that’s roughly
twice as many rounds, more comparisons, and deeper circuits.

2. I/O and memory. Enumerating, moving, or caching hypotheses for 2444

candidates is infeasible on any conceivable storage fabric; paging domi-
nates.

3. Energy/time bounds. Landauer-limit back-of-the-envelope checks make
it clear that the energy required to touch that many hypotheses (even
once) is cosmologically outrageous.

These are not proofs—your proof is the unstructured-search lower bound—but
they underline “no way in practice.”

Bottom Line
Moving from six 6-character secrets to six 12-character secrets multiplies
the attacker’s candidate space from |H6| ≈ 2222 to |H12| ≈ 2444, i.e., it squares
an already intractable space. Minimum rounds roughly double (from ∼ 86
to ∼ 172), per-round leakage remains capped, and both classical Ω(R|H|) and
quantum Ω(R

√
|H|) runtimes explode by factors of about 2223 and 2112, respec-

tively. In security-bit terms, L = 12 offers enormous headroom, easily clearing
even post-quantum 128-bit targets. The explosion is the inevitable result of
linear information per round confronting exponential growth of the hy-
pothesis set with length—a design choice that decisively favors the defender.
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