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Abstract
We quantify the hypothesis space and the fastest physically permitted quantum
attack times against a membership-only proof-of-knowledge in which a prover
holds six distinct secrets over a 72-symbol alphabet, each of length L =
100. For the tight “allow-repetitions” model (unordered multiset of six secrets,
multiplied by the six-way private bijection), the global hypothesis count is

M = 6!

(
U + 5

6

)
= U(U+1) · · · (U+5), U = 72100.

Because U � 6, one may write M ≈ U6 = 72600 with negligible relative
error at this scale. The quantum query lower bound for unstructured search
is Θ(

√
M) (Grover/BBBV). Converting oracle calls to wall-clock time under

an absolute physical ceiling, a perfectly reversible, fully coherent “cosmic”
computer that converts all baryonic mass of the observable universe into
computation and runs at the Margolus–Levitin energy-limited rate, yields (i)
a best-case floor assuming one elementary transition per Grover oracle call,
and (ii) a conservative upper bound (still ideal hardware) that charges one
elementary transition per transcript round per oracle call. For L = 100,
these two time scales are approximately 7.27×10445 years and 1.04×10449 years,
respectively.

Introduction

Quantum Computers Are Powerful, Not Omnipotent
In popular media and casual conversation, quantum computers are often por-
trayed as almost mythical devices—machines that, once built, will instantly
break all cryptography, solve all hard problems, and render classical computing
obsolete. This belief is understandable: the mathematics of quantum mechanics
is exotic, and the phrase “quantum speedup” has a mysterious allure. However,
the idea that quantum computers are omnipotent is not only inaccurate but
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also dangerously misleading. To study computer science seriously, one must
learn that quantum computing represents a new model of computation with
both extraordinary capabilities and strict limitations.

The Source of the Myth
The myth begins with the dramatic examples of Shor’s algorithm for factoring
large integers and Grover’s algorithm for unstructured search. These results
were groundbreaking because they showed that some tasks thought to be nearly
impossible for classical computers could be sped up significantly with quantum
methods. From there, it was easy for the public to leap to the conclusion: if
quantum computers can crack RSA encryption or search enormous databases
faster, surely they can solve anything. But this leap is a logical mistake. The ex-
istence of a few celebrated quantum algorithms does not mean that all problems
succumb to quantum magic.

What Quantum Computers Actually Do
A quantum computer encodes information in qubits, which unlike classical bits
can exist in a superposition of states. Quantum gates manipulate these qubits
through unitary transformations, and measurements collapse superpositions to
classical outcomes. The mathematics enables powerful interference patterns,
letting some computational paths cancel while others reinforce. This is the key
to algorithms like Shor’s.

However, the same rules that make quantum computing special also restrict
it. Quantum computation is still bound by the Church–Turing thesis: it does
not create a “new class” of computable problems. Any function computable by
a quantum computer is also computable by a classical Turing machine. The
difference lies only in efficiency—certain problems are solved faster, sometimes
dramatically so, but many others see little to no improvement.

The Limits of Quantum Advantage
Take Grover’s algorithm as an example. Classically, searching an unstructured
list of N items requires O(N) steps. Grover showed that a quantum computer
can do it in O(

√
N) steps—a genuine speedup, but not a miracle. The algorithm

does not turn exponential searches into polynomial ones. For cryptography,
this means that doubling key lengths is enough to compensate against Grover’s
square-root attack.

More importantly, quantum computers do not help with the majority of
problems we call “intractable.” NP-complete problems, for instance, are not
magically solved in polynomial time by quantum mechanics. Despite decades
of research, there is no quantum algorithm known that cracks them efficiently.
Quantum advantage is therefore narrow and problem-dependent, not universal.
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Physical and Practical Boundaries
Even if quantum algorithms offered speedups in theory, building machines to
realize them faces crushing practical limits. Quantum states are fragile, requir-
ing extreme isolation and error correction. Maintaining coherence in hundreds
or thousands of qubits demands engineering resources that grow explosively.

Physics itself imposes ceilings: the Margolus–Levitin bound limits how fast
any physical system can evolve, and the Bekenstein bound restricts how much
information can be stored in a given volume. A quantum computer cannot
exceed these universal laws of nature. The dream of a machine that “tries all
answers simultaneously” is a misconception. What actually happens is subtle
interference, not parallel universes of brute force.

Why the Naïve View Is Dangerous
Believing in omnipotent quantum computers fosters two problems. First, it
can breed unnecessary fear—the ignorant may assume that all encryption
is doomed and that privacy is impossible. Second, it can lead to unrealistic
expectations—assuming that any scientific or societal problem, from protein
folding to climate change, will be instantly solved once “quantum supremacy”
arrives. Both attitudes ignore the reality: quantum computing is a specialized
tool, not a universal solver.

A More Accurate Picture
The truth is more interesting than the myth. Quantum computers offer pro-
found insights into the relationship between physics and computation. They
redefine the landscape of complexity theory, show us surprising ways to process
information, and may open up applications we have not yet imagined. But
they remain bounded: they cannot violate information theory, cannot overturn
undecidability, and cannot shortcut every hard problem.

For practitioners entering the field, the lesson is this: "Quantum comput-
ers are NOT omnipotent machines". They are powerful new instruments,
with both strengths and limits, and they demand respect not as miracle boxes
but as rigorously defined computational models rooted in the laws of physics.

Challenge
Can a quantum computer crack the Eni6ma cypher for secret of 100
characters?

In the all sense relevant to any form of Quantum Cryptanalysis, the answer
is NO.

Why? The reason is twofold, one part information-theoretic, one part phys-
ical. On the information side, each transcript round exposes only a six-way
label (think: a fair die outcome). Because the board is rebalanced in ev-
ery round and the alphabet rings are independently rotated, those labels carry
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(in expectation) no persistent bias toward any next secret character. For-
mally, the per-round leakage is bounded by the entropy of a six-way choice,
H = log2 6 ≈ 2.585 bits, and the expected mutual information about the next
character is essentially zero when conditioned on the round’s board. That throt-
tling forces any adversary, classical or quantum, into unstructured search over
a combinatorial hypothesis space.

Let |Σ| = 72 denote the alphabet size (30 lowercase + 30 uppercase +
12 digits). With secret length L = 100, the number of possible strings is
U = |Σ|L = 72100 ≈ 5.410652511578569× 10185 (about 186 digits). The prover
possesses six distinct secrets and a private six-way relabeling (a bijection)
of the leaves. Modeling the six secrets as an unordered multiset (repetitions
permitted) and multiplying by the private bijection yields the tight hypothesis
count

M = 6!

(
U + 5

6

)
= U(U + 1)(U + 2)(U + 3)(U + 4)(U + 5)

≈ U6 = 72600 ≈ 2.5089838091796364× 101114.

(At this scale, the difference between the exact rising product and U6 is
negligible in relative terms.)

Even before computation is considered, information theory dictates how
much transcript is needed to isolate a unique hypothesis. Since each round
leaks at most log2 6 bits, the number of rounds required for “uniqueness in ex-
pectation” is

Rmin ≈
⌈

log2M

log2 6

⌉
=

⌈
6L log2 72

log2 6

⌉
L=100−−−−→ 1433 rounds.

This is the sampling threshold; it says nothing yet about the effort of search-
ing the space.

For classical attackers in an unstructured setting, one cannot do better than
“guess-and-check.” A clean lower bound on effort is

classical work & Rmin ·M ≈ (1433)× (2.5089838091796364× 101114)

≈ 3.60× 101117 elementary checks.

To interpret this against the strongest possible hardware, impose an absolute
physical ceiling on execution rate by converting all baryonic mass of the
observable universe (order 1053 kg) into a perfectly reversible, fully coherent
processor and running it at the Margolus–Levitin limit (about 5.4256× 1050

ops/s/kg). The resulting “cosmic computer” has an instantaneous operation
rate

νuniv ≈ (5.4256× 1050)× (1053) = 5.4256× 10103 ops/s.
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Dividing the classical work by this ceiling produces an absolute lower
bound on wall-clock time for classical exhaustive search:

tclass &
3.60× 101117

5.4256× 10103

≈ 6.6× 101013 s ≈ 2.1× 101006 years.

This number is so large that it dwarfs any cosmological timescale; it already
renders classical brute force physically moot.

What about quantum computation? For unstructured search, the best
asymptotic improvement is quadratic (Grover/BBBV): the required oracle
calls scale as Θ(

√
M) rather than M . With M ≈ 72600,
√
M ≈ 72300 ≈ 1.584110994042681× 10557,

and the canonical Grover schedule makes

NGrover ≈
π

4

√
M

≈ 1.244052793427124× 10557

oracle calls. Translating oracle calls to time under the same physical ceiling
leads to two meaningful benchmarks:

1. Physical floor (best-case): treat one Grover oracle call as oneMargolus–Levitin-
limited elementary transition (a generous idealization). Then

Tmin =
NGrover

νuniv
≈ 1.244052793427124× 10557

5.4256× 10103

≈ 2.2929312765907327× 10453 s ≈ 7.265860764414064× 10445 years.

2. Conservative upper bound (still ideal QC): even an ideal, reversible
oracle must process each transcript round, so charge one elementary
transition per round per oracle. With Rmin = 1433,

T(1 op/round) =
NGrover ·Rmin

νuniv
≈

(1.244052793427124× 10557) · 1433

5.4256× 10103
≈ 3.285770519354520× 10456 s

≈ 1.0411978475405354× 10449 years.
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Both times already assume the fastest hardware permitted by physics;
any realistic tally of oracle depth, ancilla management, routing, cryogenics, and
fault-tolerant error correction increases them, often by many orders of magni-
tude, because a nontrivial Grover oracle is a deep reversible circuit, not a single
energy-limited tick. The net picture is therefore unambiguous: with L = 100,
(i) the hypothesis space M ≈ 2.5 × 101114 is so large that classical exhaustive
search is physically out of the question, and (ii) the quantum advantage, while
asymptotically quadratic, still leaves the required number of coherent ora-
cle calls and the ensuing wall-clock time far beyond any plausible, or even
cosmologically available, computational budget.

1. Model and Parameters
• Alphabet and secrets. Alphabet size |Σ| = 72. The prover holds six

pairwise distinct secrets; each secret has length L = 100.

• Universe size. Number of possible 100-character strings:

U = 72100 ≈ 5.410652511578569× 10185,

i.e., 186 digits in base-10.

• Global hypothesis space (tight allow-repetitions + private map).

M = 6!

(
U + 5

6

)
= U(U+1)(U+2)(U+3)(U+4)(U+5) ≈ U6 = 72600.

Scientific form (using U6):

M ≈ 2.5089838091796364× 101114,

i.e., 1115 digits in base-10.

• Rounds to uniqueness (information bound). Each round reveals at
most log2 6 bits; the expected rounds threshold is

Rmin ≈
⌈
log2 M
log2 6

⌉
=
⌈
6L log2 72

log2 6

⌉
L=100−−−−→ Rmin = 1433 .

2. Quantum Query Lower Bound and Search Scale
• Square root of the search space. With M ≈ U6,

√
M ≈ U3 = 72300 ≈ 1.584110994042681× 10557,

i.e., 558 digits in base-10.

• Grover iteration count. The canonical schedule is

NGrover ≈
π

4

√
M ≈ 1.244052793427124× 10557 oracle calls.
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3. Physical Ceiling on Operation Rate
Let νmax denote the absolute operation-rate ceiling obtained by:
(i) converting all baryonic mass of the observable universe (∼ 1053 kg)
into a perfectly reversible processor, then
(ii) operating at the Margolus–Levitin limit (∼ 5.4256× 1050 ops/s/kg).
Then

νmax = (5.4256× 1050)× (1053) ≈ 5.4256× 10103 ops/s

This is a hard ceiling: practical oracle depth, routing, cooling, and error-
correction only increase real runtimes.

4. Ideal-Quantum Attack Times for L = 100

4.1 Best-Case Physical Floor (One Elementary Transition
per Oracle Call)
Assume one Margolus–Levitin-limited elementary transition implements one
Grover oracle call. The resulting time floor is

Tmin =
NGrover

νmax
≈ 1.244052793427124× 10557

5.4256× 10103

= 2.2929312765907327× 10453 seconds

Converting to years (divide by 31 557 600 s/yr):

Tmin ≈ 7.265860764414064× 10445 years

Plain-English scale: “about seven point two seven × 10ˆ445 years,”
i.e., a 7 followed by 445 zeros years.

4.2 Conservative Upper Bound (One Elementary Transition
per Round per Oracle)
Even with an ideal quantum processor, a non-degenerate oracle must coherently
process each of the R transcript rounds. Charging one elementary transition
per round per oracle yields

T(1 op/round) =
NGrover ·Rmin

νmax
≈

(1.244052793427124× 10557) · 1433

5.4256× 10103
= 3.285770519354520× 10456 seconds

In years:
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T(1 op/round) ≈ 1.0411978475405354× 10449 years

Plain-English scale: “about one point zero four × 10ˆ449 years,” i.e.,
a 1 followed by 449 zeros years.

Remark. If a (still ideal) oracle needs c > 1 elementary transitions per
round (for lookups, arithmetic, comparisons, uncomputation, etc.), time scales
linearly: T ∝ c. For example, c = 10 inflates the upper bound to ∼ 1.04×10450

years; c = 100 to ∼ 1.04× 10451 years.

5. 1045 Normalization (for M)
Some applications prefer reporting M/1045. With M ≈ 2.5089838091796364×
101114,

M

1045
≈ 2.5089838091796364× 101069

6. Summary of Final Numbers (for L = 100)
• Hypothesis count (tight allow-repetitions):
M ≈ 2.5089838091796364× 101114 (≈ 1115 digits).

• Square-root search scale:√
M ≈ 1.584110994042681× 10557.

• Grover iteration count:
NGrover ≈ 1.244052793427124× 10557 oracle calls.

• Physical operation-rate ceiling:
νmax ≈ 5.4256× 10103 ops/s.

• Ideal-quantum time, physical floor (1 op per oracle):
Tmin ≈ 2.2929312765907327×10453 s ≈ 7.265860764414064× 10445 years .

• Ideal-quantum time, conservative upper bound (1 op per round
per oracle; Rmin = 1433):
T(1 op/round) ≈ 3.285770519354520×10456 s ≈ 1.0411978475405354× 10449 years .

These bounds already assume the most favorable hardware consistent
with known physics. Any realistic accounting of oracle depth, ancilla manage-
ment, routing, cryogenics, and fault-tolerant quantum error correction increases
the attack time, often by many orders of magnitude.

8



References
1. L. K. Grover, “A fast quantum mechanical algorithm for database search,”

Proceedings of the 28th Annual ACM Symposium on the Theory of Com-
puting (STOC’96), pp. 212–219, 1996. doi:10.1145/237814.237866

2. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths
and weaknesses of quantum computing,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1510–1523, 1997. doi:10.1137/S0097539796300933

3. A. Y. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum Computa-
tion. American Mathematical Society, 2002.

4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation, 10th Anniversary Edition. Cambridge University Press, 2010.

5. S. Aaronson, Quantum Computing since Democritus. Cambridge Univer-
sity Press, 2013.

6. S. Lloyd, “Ultimate physical limits to computation,” Nature, vol. 406, no.
6799, pp. 1047–1054, 2000. doi:10.1038/35023282

7. N. Margolus and L. B. Levitin, “The maximum speed of dynamical evo-
lution,” Physica D: Nonlinear Phenomena, vol. 120, pp. 188–195, 1998.
doi:10.1016/S0167-2789(98)00054-2

8. J. D. Bekenstein, “Universal upper bound on the entropy-to-energy ratio
for bounded systems,” Physical Review D, vol. 23, no. 2, pp. 287–298,
1981. doi:10.1103/PhysRevD.23.287

9. R. Landauer, “Irreversibility and heat generation in the computing pro-
cess,” IBM Journal of Research and Development, vol. 5, no. 3, pp.
183–191, 1961. doi:10.1147/rd.53.0183

10. C. H. Bennett, “Logical reversibility of computation,” IBM Journal of Re-
search and Development, vol. 17, no. 6, pp. 525–532, 1973. doi:10.1147/rd.176.0525

11. S. Lloyd, “Computational capacity of the universe,” Physical Review Let-
ters, vol. 88, no. 23, 237901, 2002. doi:10.1103/PhysRevLett.88.237901

12. R. Jozsa, “Quantum algorithms and the Fourier transform,” Proceedings of
the Royal Society A, vol. 454, no. 1969, pp. 323–337, 1998. doi:10.1098/rspa.1998.0164

13. P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” Proceedings 35th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 124–134, 1994. doi:10.1109/SFCS.1994.365700

14. D. Deutsch, “Quantum theory, the Church–Turing principle and the uni-
versal quantum computer,” Proceedings of the Royal Society A, vol. 400,
no. 1818, pp. 97–117, 1985. doi:10.1098/rspa.1985.0070

9



15. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring al-
gorithm,” Reviews of Modern Physics, vol. 68, no. 3, pp. 733–753, 1996.
doi:10.1103/RevModPhys.68.733

16. S. Aaronson and A. Ambainis, “Quantum search of spatial regions,” Theory
of Computing, vol. 1, no. 1, pp. 47–79, 2005. doi:10.4086/toc.2005.v001a003

17. M. Mosca, “Quantum algorithms,” in Encyclopedia of Complexity and Sys-
tems Science, R. A. Meyers, Ed. Springer, 2009, pp. 7088–7118.

18. D. R. Simon, “On the power of quantum computation,” SIAM Journal on
Computing, vol. 26, no. 5, pp. 1474–1483, 1997. doi:10.1137/S0097539796298637

19. S. Wiesner, “Conjugate coding,” ACM SIGACT News, vol. 15, no. 1, pp.
78–88, 1983. doi:10.1145/1008908.1008920

20. J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, 79, 2018. doi:10.22331/q-2018-08-06-79

21. C. Zalka, “Grover’s quantum searching algorithm is optimal,” Physical Re-
view A, vol. 60, no. 4, pp. 2746–2751, 1999. doi:10.1103/PhysRevA.60.2746

22. M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum
searching,” Fortschritte der Physik, vol. 46, no. 4-5, pp. 493–505, 1998.
doi:10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-
P

23. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physi-
cal Review Letters, vol. 86, no. 22, pp. 5188–5191, 2001. doi:10.1103/PhysRevLett.86.5188

24. D. Gottesman, “Fault-tolerant quantum computation with constant over-
head,” Quantum Information & Computation, vol. 14, no. 15–16, pp.
1338–1372, 2014.

25. J. Preskill, “Quantum computing and the entanglement frontier,” arXiv
preprint arXiv:1203.5813, 2012.

10

http://3.0.CO

