
E6‑Agent: A Deep Dive into Purpose, Goals, and Architecture of

Symmetric, Stateless, Encrypted Agents

The E6‑Agent system is a security‑first communications substrate built around the idea of

symmetric clone agents: two or more identical binaries, compiled from the same source

and configured with peer identities, that can communicate over a network using fully

encrypted, proof‑gated channels. Each agent is designed to be stateless in operation—

meaning it can be invoked for a single shot message or participate in a continuous

oscillation handshake—without retaining sensitive state in memory across invocations or

requiring long‑lived processes to hold secrets. This design yields a versatile platform for

cyber security communications patterns where agents can send files, issue commands,

and exchange structured envelopes of cryptographic proof and payload, all with strict

integrity guarantees and minimal trusted computing base.

At its heart, the system anchors trust in two elements: an embedded 512‑bit prime π and

an encrypted entropy pool stored beside the binary. These two elements drive

deterministic but unpredictable cryptographic derivations keyed by time, denoted as

session τ (microsecond precision), producing one‑time keys and commitments that are

validated on receipt. Rather than introducing heavyweight session state, the system relies

on canonical, signed‑by‑hash envelopes that contain all the information necessary to

validate a message in isolation. In this way, the transport is stateless while still enabling

rich multi‑round protocols. When operating in oscillation mode, symmetric clones

exchange challenge/response envelopes in cycles that “prove” a peer’s correctness

before delivering any sensitive payload; in one‑shot mode, a single message is sent with a

tighter acceptance window, suitable for bursty, fire‑and‑forget messaging. Because every

operation is streamed through a CLI‑first stateless binary (with an optional REST proxy

that does not hold secrets), the blast radius of compromise is minimized and operational

reproducibility is maximized.

The primary purpose of the system is to furnish a reliable, cryptographically robust, and

operationally simple mechanism for agent‑to‑agent communication in hostile networks.

The goals include: (1) maintaining confidentiality and integrity using derivations bound to

time and an embedded secret; (2) proving liveness and correctness of the peer before

releasing any sensitive data or commands; (3) supporting both single‑shot and

continuous interactions without requiring persistent sessions; (4) enabling secure file



transfer and command execution semantics under the same envelope; (5) providing a

deployment story that is reproducible and easy to operate (e.g., Dockerized agents on a

dedicated bridge network with a single orchestrator script). The overall architecture is

intentionally modular: the CLI binary performs all cryptographic and proof work; an

optional REST service acts only as a sanitized proxy; and Docker orchestration wires

multiple clones into a controlled topology for reliable testing, operations, and future scale.

The theory of symmetric clones begins with eliminating asymmetric role assumptions.

Traditional client/server designs embed asymmetry in capabilities and trust. E6‑Agent

rejects that: any agent can initiate, validate, respond, and transmit messages. Each

“clone” is not just a peer but a true mirror: same code path, same cryptographic

primitives, same envelope semantics. Differences are reduced to identity and location—

agent IDs, URIs, and allowable capabilities—rather than fundamental role bifurcation. This

symmetry simplifies reasoning about the protocol, because every message a clone emits

is also a message it knows how to validate and every challenge it generates is a challenge

it could answer. When agents are deployed in pairs (Agent Alpha and Agent Beta), they

can oscillate indefinitely, alternately challenging and responding while relaying

time‑bound, encrypted payloads, or they can be invoked once to deliver a single

encrypted message under narrow time acceptance windows. In both cases, correctness is

verified the same way: through recomputation of derivations using the embedded prime π,

the external encrypted entropy pool, and session τ.

To make this symmetry work without persistent state, the system standardizes a canonical

envelope. An envelope is a JSON object that carries all information needed to validate and

act upon the message. It contains the fields for AGENT_ALPHA  and AGENT_BETA
(attestation metadata and drift tolerance), the CHALLENGE  (selected entropy rows and

commitments), the RESPONSE  (witness data that answers the challenge), the optional

PROJECTION  (geometry and witness vocabulary that structure the response), and the

optional MESSAGE  (the encrypted payload, including its salt, format, and integrity data). It

further contains STATELESS_METADATA  with explicit resource constraints (time and

memory), top‑level session_tau  to bind derivations to time, and proof_hash , a

SHA‑256 of the canonicalized envelope bytes using JSON Canonicalization Scheme (JCS,

RFC 8785). Because proof_hash  is computed across the entire canonical envelope

including the message salt and any AEAD parameters, recipients can detect any mutation

or partial replay. This design allows envelopes to be relayed or cached transiently while

retaining cryptographic linkages across all parts of the message.



The oscillation protocol is a two‑cycle gate that ensures no sensitive payload is

transmitted before the peer has demonstrated correctness. Cycle 0 starts with a

challenge‑only envelope from Alpha to Beta. Beta validates the challenge against its local

entropy pool and its embedded π and τ, then replies with a response envelope that also

includes a fresh challenge. Cycle 1 proceeds with Alpha validating Beta’s response. Only

after that validation passes does Alpha attach the sensitive MESSAGE  to its next envelope

—along with its own response to Beta’s challenge—and transmits. The MESSAGE  is

proof‑gated in this way; any attempt to prematurely include it would be rejected by a

conformant peer. The cycle then continues as needed, alternating roles, with each

envelope carrying a new challenge, a response to the previous challenge, and optionally a

message if the peer has satisfied gating. This simple alternation is sufficient to maintain a

secure oscillation channel that is stateless at rest and yet continuously proving liveness

and correctness through each round. Because session τ is embedded in derivations, an

acceptance window must be enforced at receipt; the system includes drift tolerance

metadata to ensure predictable behavior under skew.

In parallel to oscillation, a one‑shot mode supports short, bursty communications where

the sender transmits a single envelope containing a challenge and a message. The

acceptance window is narrower due to lack of prior handshake. Even in this reduced flow,

proof_hash  must validate and the challenge must be recomputable against the

receiver’s pool, preventing blind decryption or unauthenticated payloads. One‑shot mode

is valuable for scenarios where reliability is provided by higher layers (e.g., job queues or

store‑and‑forward networks) or where latency and simplicity are prioritized over long‑lived

channels. Because E6‑Agent is stateless, switching between one‑shot and oscillation

modes does not require reconfiguration; it is primarily a matter of which envelope type is

constructed and how acceptance windows are applied.

The cryptographic substrate uses a combination of deterministic time‑bound derivations

and standard hash‑based commitments. The E6‑Agent includes an embedded 512‑bit

prime π that acts as a root secret. Alongside, an encrypted entropy pool file provides a

large corpus of values; from this pool, the sender selects K indices to construct a

challenge. The challenge includes per‑row commitments—two‑way hashes whose

structure supports index recovery by the receiver. Given τ and π, and the decrypted pool

content, the receiver recomputes candidate row hashes and matches them to the

transmitted hashes, efficiently recovering the selected pool indices. This two‑way

property removes the need to transmit the indices in cleartext while preserving

verifiability. For performance, the system supports attaching pool_index  directly inside



each entropy row item; if present, the receiver can access the correct entry in O(1) time,

skipping the pool scan, which is useful for stateless resources and low‑power

environments. All commitments are computed using SHA‑256; stream encryption and key

derivation use keyed BLAKE3/XOF and HKDF‑SHA256, and optional message AEAD uses

AES‑256‑GCM. The modularity of these primitives allows future evolution without

disturbing the envelope structure, as the canonicalization draws a hash across the full

state rather than requiring signatures.

Time binding is a crucial element. The system resolves session τ at microsecond precision

and mixes it into every derivation. This ensures that even if the same pool rows and the

same prime are reused, the session keys and row commitments differ per interaction,

undermining replay attempts and limiting the utility of captured envelopes. Acceptance

windows—configurable or carried with the agent metadata—bound permissible drift. In

oscillation, windows can be on the order of several seconds to accommodate network

jitter; one‑shot envelopes should be stricter by policy. Because τ appears both as a

top‑level field and inside challenge/response data, the receiver validates consistency

before proceeding. This combination of time‑bound derivation and envelope‑wide hashing

reproduces the anti‑replay benefits of nonce‑based systems while remaining stateless

and symmetric across clones.

The optional PROJECTION  object gives semantic structure to responses. It defines rings

(e.g., uppercase letters, lowercase letters, digits) and a vocabulary of witnesses (e.g., U,

D, R, L, F, B). Responses can then carry witness selections and timestamps per challenge

row. Although projections are not strictly necessary for cryptographic soundness, they

help encode and audit the behavioral structure of the challenge/response interaction,

which is useful for visualization, replay diagnostics, and coupling to higher‑level proof

systems that expect structured transcripts. If present, the projection is bound into the

proof_hash , ensuring that an attacker cannot mismatch response semantics. When

omitted, the system relies purely on hashed commitments and witness arrays with minimal

semantics.

The MESSAGE  object is the payload carrier. It is only included after proof‑gating is

satisfied (or immediately in one‑shot). It specifies an encryption format, a salt used to

derive a per‑message key from the session key, a message identifier, metadata about the

content, and the ciphertext blocks. E6‑Agent supports a two‑way stream format

(PRSH256) where ciphertext is produced in fixed blocks from a stream cipher seeded by

the time‑derived session key and then salt‑derived message key; it also supports an AEAD



path such as AES‑256‑GCM for storage and interoperability scenarios that require

authenticated encryption with standardized parameters ( iv  and tag ). For the stream

path, integrity is provided by the outer envelope proof_hash  and optional per‑message

verification hashes; for AEAD, both the envelope and the AEAD tag must validate. In either

case, the salt and any AEAD parameters are part of the canonicalization so that payloads

cannot be swapped or replayed under different salts. The message payload model is

deliberately flexible: blocks can be inlined for small messages or handled as opaque

assets addressed by ID or URL with fetch semantics guarded by the same proof gate.

Command execution is handled with the same envelope mechanics. A command is simply

a message whose payload requests the peer to perform an action under strict allow‑list

and resource constraints. The optional REST layer translates authorized API requests into

CLI invocations that parse JSON input and emit JSON output. Crucially, the REST proxy

never holds the cryptographic secrets; it only validates request size and shape, writes any

large payloads to sanitized temporary files, and invokes the CLI binary with non‑interactive

flags. The binary does the cryptographic work: decrypting pools, verifying proofs, deriving

session keys, and executing safe operations. Per‑request CPU, memory, and time limits

are enforced. This separation ensures that a compromise in the REST surface does not

automatically compromise cryptographic material or the correctness of proof processing,

and it preserves the simplicity of a stateless binary that can also be run directly without

any HTTP server involved.

The overall architecture is composed of a handful of modules working in concert. The

CLI’s public surface is implemented in the main binary entry point, while core facilities live

in dedicated modules: encrypted_pool  for encrypted pool handling and commitment

checks; two_way_hash  and two_way_stream  for index‑recoverable commitments and

stream encryption; entropy_system  and pool_generator  for creating and consuming

entropy; interactive_proof  and nonce_interactive_proof  for orchestrating

challenge/response semantics; epsilon_tau_pi  for the modulo‑path derivation that

deterministically maps (ε, τ, π) to structured selections; and path_utils , errors , and

remote_verification  for robust IO, typed error handling, and remote peer checks.

These modules are assembled into stateless operations that accept JSON input, apply

deterministic cryptography, and return JSON output. Because the binary is the only holder

of cryptographic responsibility, it remains the system’s root of correctness; everything

else is an operational convenience.



Deployment emphasizes reproducibility. In a typical setup, two containers—Agent 1 and

Agent 2—are placed on a Docker bridge network with stable service names and ports.

Each container runs the same binary; differences are injected via environment variables

for agent identity and URIs. Health endpoints exposed by the optional REST service permit

liveness and readiness probes, while logs are centralized to mounted volumes with

rotation. A single orchestration script can compile the binary, generate the entropy pool,

build images, bring up containers, and run an oscillation test that confirms the full

two‑cycle gate, including message delivery after proof validation. Because the transport is

stateless and envelopes are self‑describing, restarting an agent or replacing a container

does not break the channel; the next received envelope will be validated against fresh τ

and replay attempts will be rejected by drift windows and proof mismatch.

Security considerations drive design decisions throughout. The root secret is confined to

the binary, and secrets at rest (the entropy pool) are encrypted. Envelope integrity is

enforced with proof_hash  computed over a canonical representation, preventing subtle

attacks via JSON ambiguity. Time binding thwarts replay, and proof‑gated messages

prevent premature release of sensitive data. For messages that carry files, the payload

can include integrity hashes or AEAD tags; for commands, the proxy layer strictly limits

which actions are permissible and how much resource can be consumed. Rate limiting,

request size limits, and background deduplication caches for broadcast envelopes help

resist resource exhaustion and message storms. Every field that influences security—drift

tolerances, routes, TTLs, and so on—is either bound into proof_hash  or checked against

policy, ensuring that envelopes are not just syntactically valid but semantically

constrained.

The broadcast and routing model is deliberately conservative. An envelope may carry

BROADCAST  metadata that includes a message hash, time‑to‑live, maximum hop count,

and an observed routing path. Receivers consult a short‑lived deduplication cache keyed

by that message hash and decline to rebroadcast if already seen or if hop and TTL policies

would be violated. This prevents infinite loops in meshed deployments and supports

store‑and‑forward behavior where agents may relay messages on behalf of peers.

Because the broadcast metadata is bound in the proof_hash , any attempt to strip or

alter routing hints will be detected by conformant peers. This model is compatible with

stateless processing: the dedupe cache is purely ephemeral and best effort; failure only

risks temporary duplicates, not protocol correctness.



A common question about symmetric clone systems is how they scale without

coordination or server authority. E6‑Agent’s answer is to encode all dynamic intent and

state into the envelopes themselves and to use time as the coordination substrate. There

is no central registry of sessions or nonces; there are only envelopes that can be validated

independently. For extended oscillations, the alternation of challenge/response assures

progress and liveness checks; for one‑shot exchanges, strict τ windows trade reliability for

simplicity. When agents need to exchange large files or chain actions, they can do so by

queuing messages under the same proof gate: first demonstrate correctness, then fetch

asset declarations and verify integrity, then perform the requested action. Because every

stage is carried in an envelope that includes integrity proofs and time binding, peers can

reason locally about correctness without querying a central authority.

From a theoretical standpoint, the combination of an embedded prime π and time τ gives

rise to a rich family of deterministic derivations that are easy to compute yet hard to

predict in advance without the secret. The modulo‑path approach—mapping τ through

structured moduli like 30/30/12 into column and ring selections—yields compact,

branch‑free computations that are suitable for high‑throughput environments. The

two‑way row hash binds together the row index, the pool index (optionally), the row

values, τ, and π, such that a verifier can recover the index by scanning but an attacker

cannot forge a valid row without either the pool or the prime. Layered atop these

primitives, the envelope’s canonicalization ensures everyone agrees on exactly what is

being proved and encrypted, reducing room for divergent interpretations that could

compromise security. These ingredients cohere into a protocol that is both simple to

implement and strong in its guarantees.

Operationally, the system is designed for clarity. The optional REST proxy exposes a small

set of routes: health checks, file upload/download, command execution, and oscillation

helpers. Each route accepts JSON, applies authentication and rate limiting, and hands off

work to the CLI with a strict allow‑list. The CLI, in turn, accepts a discriminated union of

requests and returns a normalized response. Errors are typed and mapped to HTTP status

codes; logs are structured and emitted with timestamps and drift deltas to aid triage. The

goal is to keep the operational story boring: operators run a single script that builds and

deploys, then watch as agents challenge, prove, and message each other in a predictable

cadence.

Interoperability is achieved through rigorous canonicalization and schema discipline. The

canonical envelope has a well‑defined flat structure, but the system also accepts nested



forms (for example, proof.payload.json ) that it normalizes before computing

proof_hash . The JSON Canonicalization Scheme ensures that two independent

implementations produce the same bytes for hashing if they agree semantically. This

allows envelopes to be verified across languages and platforms without ambiguity. It also

allows future evolution: new optional fields can be added and, as long as they are included

in canonicalization, old implementations will simply ignore unfamiliar data while still

computing correct proof_hash  values. Versioning fields in the envelope guard against

accidental cross‑version mishandling and give clear failure modes when a receiver

encounters an unknown schema.

Stateless processing is not just a performance hack; it is a reliability and security strategy.

When no long‑lived process holds secrets, restarts and redeployments are cheap and

safe. When all the information necessary to validate a message is in the message itself,

late arrivals or reordered packets can be handled without special logic. When the only

thing the REST proxy does is execute authorized CLI commands with resource caps, the

attack surface shrinks dramatically. In the worst case, a denial‑of‑service attack can tie up

proxies, but secrets remain confined, and backpressure mechanisms can shed load

without compromising correctness. Conversely, if a CLI invocation is compromised, it dies

with its process; no session keys linger in memory and no nonces are left half‑used. These

are the sorts of failure modes that make symmetric clone systems attractive in adversarial

settings.

The difference between one‑shot and oscillation modes is worth emphasizing from a

systems perspective. One‑shot is ideal for small, time‑sensitive notifications, quick

command dispatch, or latency‑critical file stubs where the receiving side can fetch

additional data later. Oscillation is ideal when the two peers need to sustain a flow of

messages with ongoing assurance of correctness, such as telemetry streams, control

loops, or multi‑stage asset transfers. Because the underlying mechanics are identical,

operators and developers do not have to learn two protocols; they simply choose the

envelope type and apply the appropriate window policies.

A nuanced aspect of the design is the treatment of indices in challenges. When

pool_index  is omitted, the receiver performs an authorized index recovery scanning

through the pool and recomputing the two‑way row hash. This adds computational cost

but removes sensitive metadata from transit. In constrained environments, including

pool_index  can improve performance dramatically by making verification O(1) per row;

since the envelope is hashed and time‑bound, the security trade‑off is acceptable under



most threat models. Implementations can select the policy per deployment profile,

balancing confidentiality of internal layout against verification throughput.

File transfer semantics extend naturally from the message model. A file is chunked into

blocks and encrypted under a message key derived from the session key and salt. For

AEAD paths, each block carries an integrity tag and IV; for stream paths, integrity is

ensured by the outer proof_hash  plus optional per‑file integrity metadata (e.g., a

SHA‑256 of the plaintext). Transfers can be inlined for small files or referenced as assets

with an asset_id  and retrieved over a secure route guarded by the same proof gate.

This flexibility allows a single envelope to initiate a file send, with the receiver either

reading inlined blocks directly or fetching larger content with authorization bound to the

envelope’s correctness.

Command semantics are likewise conservative. The proxy does not allow arbitrary shell

execution; instead, it maps a small set of command names to well‑defined CLI modes that

accept structured JSON. Examples include validating a nonce file, encrypting or

decrypting a stream, building or verifying an envelope, and responding to a challenge.

Each command runs with strict timeouts and memory caps; files are handled via sanitized

temporary directories with atomic writes to prevent race conditions. Exit codes and stderr

are mapped into typed error objects; on the REST side, these become recognizable HTTP

responses with machine‑readable payloads for orchestration.

From a risk perspective, the design anticipates common threats. Replay is mitigated by

time binding; message tampering is caught by proof_hash  (and AEAD where used);

unauthorized command execution is controlled by strict allow‑lists; path traversal and

injection are prevented by input validation and sanitized file handling; denial‑of‑service is

mitigated by rate limiting, request size limits, and per‑exec resource caps; clock drift is

controlled by acceptance windows and logged drift deltas to support root cause analysis.

The use of versioned envelopes and explicit error objects improves resilience to schema

evolution and makes it clear when a mismatch is due to version rather than corruption or

attack.

Performance characteristics are strong for a stateless system. With pool_index  present,

verification of a challenge is O(K) with small constant factors; without it, it is O(K·M) for a

pool of size M, still tractable for the pool sizes the system targets. Stream encryption

using keyed BLAKE3 is fast and vector‑friendly; AEAD paths benefit from modern CPU

acceleration. Canonicalization and hashing are linear in envelope size and negligible

compared to cryptography on large payloads. Because the binary is single‑purpose and



non‑interactive, it can be scaled horizontally simply by launching more clones; because

envelopes are self‑describing, load can be distributed across clones without sticky

sessions.

The development model invites clarity and testability. Each module can be tested

independently with golden files for canonicalization and proof_hash , unit tests for

envelope validation rules, and integration tests that run the CLI in JSON mode. End‑to‑end

tests spin up two agents, drive the oscillation cycles, and verify that sensitive messages

are only delivered after proof validation. Documentation includes API descriptions for the

REST proxy and worked examples for typical flows. The single orchestration script puts it

all together, from building and deploying to running a sample oscillation and confirming

that agents can securely exchange data.

In terms of extensibility, the envelope allows optional objects such as asset declarations,

richer message verification metadata, and broadcast hints. Each addition is bound by

proof_hash  so it cannot be silently altered. The cryptographic algorithms are swappable

within reason: a new stream format or AEAD can be added with new identifiers and

parameters, and as long as canonicalization covers the fields, old versions will reject

unknown formats cleanly. The projection model is also open: different witness alphabets

and ring structures can be introduced for domain‑specific proof semantics, again

bounded by hashing.

Finally, the philosophy that animates E6‑Agent is one of principled minimalism. The

system deliberately privileges the stateless CLI as the place where truth is computed and

checked. Everything else—the REST service, Docker, orchestration—is built to get out of

the way while providing operational convenience. Symmetry between clones avoids

special‑case logic and creates a mental model where “if I can send it, I can verify it.” Time

binding and canonicalization create a clean separation between on‑the‑wire data and

validation logic, making it easier to review and audit security properties. The result is a

small‑surface, high‑assurance communications pattern that scales from one‑shot

messages to indefinite oscillations, from tiny embedded deployments to containerized

clusters, all without compromising on the principles of confidentiality, integrity, and

correctness.

In closing, E6‑Agent offers a unified design for secure, stateless, symmetric agent

communications. Its envelopes are self‑describing and canonicalized; its cryptographic

roots are simple and strong; its operational story is reproducible and unintrusive. Agents

can send files, issue commands, and maintain an oscillating proof loop, or they can deliver



single messages with tight windows. In every case, the same core guarantees apply: what

arrives can be validated locally, what is acted upon has been proven, and what is secret

remains secret. This is the essence of symmetric clone design—each agent is both sender

and verifier, both challenger and responder—and it is the bedrock of a communications

system built to thrive under adversarial conditions.


