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Abstract

We presnt a formal, end-to-end security argument for an ENI6MA-style interac-
tive proof in which the attacker “gains nothing,” in the precise sense of Shannon’s
perfect secrecy. We analyze a mechanism whose central features are: (i) a one-
time, entropy-dependent projection (“OTP”) of the alphabet into six perceptual
leaves; (ii) ring-rotation diffusion that spreads symbol appearances across a
large configuration space with multiplicity x = 30 x 30 x 12 = 10,800 per ring-
state; (iii) confusion induced by a private bijective map from the six leaves
to six private synonyms (e.g., six bearing directions); and (iv) a second-layer
map enumerating all permutations of the six leaves, i.e., 6! = 720. We also quan-
tify the combinatorial blow-up attributed to these layers by showing how the
second-layer permutations amplify the ring-state space to 2% = 27?° candidate
configurations in a natural upper-bound model of the attacker’s uncertainty.
When folded into an interactive ceremony whose responses are masked (e.g.,
via XOR or modular masking) and whose probes are balanced, the observ-
able transcript becomes strictly non-informative about the pre-commitment
alphabet: every observable value is equally probable, across rounds and
across epochs.

The first half of the work is information-theoretic. We formalize perfect
secrecy for the observable transcript C, the hidden message M (the next alpha-
betic symbol in the commitment), the one-time projection P, the ring-rotation
state R, and the private map K. Under mild regularity (uniformity and in-
dependence of the one-time elements, correct nonce/epoch discipline, and bal-
anced probes), we prove I(M;C) = 0 and give explicit statements such as
P(M =m | C =¢) = P(M = m) for all m,c. Intuitively, the transcript is
a one-time pad in the alphabetic geometry (rather than in the bit strings) be-
cause a uniformly random, single-use projection and mask render the observed
synonym statistically independent of the true symbol and of the private map.



The second half is computational and operational. We show that even a
full-power adversary, classical or quantum, does not find traction because no
residue (no bias, no correlations, no frequency signature) accumulates across
sessions. The best the adversary can attempt is brute-forcing latent states
jointly: the private map (size 6!) and the ring-rotation configuration (size x)
raised to however many independent latent degrees of freedom govern the map-
ping. In the natural upper-bound model where each factorial degree can inde-
pendently carry a ring-state, the combined space is 2% = 10800720 ~ 102994 ~
29647 possibilities. Grover acceleration (square-root speedup) against such a
space leaves ~ 2%823:5: that number remains beyond reach by any remotely
plausible quantum hardware. In the practical model where the ring-state re-
news per round (say h rounds), the attacker still faces 6! - " possibilities while
the transcript remains equiprobable and non-informative; no post-processing of
an uninformative transcript produces information.

The human/agent solving efficiency is explained by Gestalt search over
six perceptually salient leaves and by XOR/modular masking that cancels
the verifier’s challenge while never disclosing the raw witness. Humans locate
the target alphabet quickly by preattentive features; agents compute the same
mapping deterministically. The speed enjoyed by legitimate provers stems from
asymmetry of knowledge (they know K and the current symbol) rather than
from any structure available to the attacker: this is the essence of “knowing
without showing.”

1. Introduction and Motivation

Shannon’s perfect secrecy formalizes a gold standard for confidentiality: ob-
serving ciphertext tells you nothing about the message. In symbols, perfect
secrecy is the condition

PM=m|C=c¢) = P(M=m) forall m,c,

“The probability of message m given ciphertext ¢ equals the prior probability
of m.”

Equivalently, the mutual information between M and C is zero, I(M; C) = 0.
In conventional cryptography, the one-time pad achieves this when the key is
uniform, at least as long as the message, and used once.

This dissertation considers a different, but mathematically analogous, set-
ting: an interactive proof in which a prover demonstrates knowledge of the
next symbol of a pre-committed secret without revealing that symbol. In-
stead of XOR’ing a bitstring with a one-time key, we project the alphabet
into six perceptual leaves using a one-time, entropy-dependent projection
P, we diffuse symbol locations with ring rotations across a large state space
x = 10,800, and we hide the relationship between leaves and the prover’s pri-
vate synonyms via a private bijection K over the six leaves (|K| = 6! = 720).



Finally, we combine these with a masked response rule (e.g., XOR or mod-
ular addition on the index) so that the verifier can check correctness without
learning the raw witness. The end effect is a Shannon-style OTP in the al-
phabetic geometry: the observable symbol is independent of the true symbol
because of the combined one-time projection and mask; frequency, correlation,
and cross-session inference receive no foothold.

The two reasons an attacker learns nothing are:

1. Information-theoretic independence. The observable transcripts are
generated by a one-time random projection and masking that render them
statistically independent of the message. There is no amount of computa-
tion, classical or quantum, that can turn independent data into dependent
data.

2. Combinatorial explosion in hidden state. If an attacker insists on
brute force guessing of hidden state rather than relying on information
from transcripts, the attack crater is enormous. The private map space
contributes a 6! factor; the ring-rotation diffusion contributes z states per
applicable degree of freedom; the natural upper bound is 2% when rota-
tions bind independently to each factorial component. This is so large
that even Grover’s quadratic speedup does not change the feasibility con-
clusion.

We proceed by formalizing the objects, proving perfect secrecy, quantifying
spaces, and contrasting the efficient human/agent solve with the intractable
attacker search. Throughout, we keep to two reading tracks: (i) rigor with
equations; and (ii) short T'TS paraphrases after each displayed formula for
accessible narration.

2. Objects and Ceremony: Symbols, Projections,
Maps, and Masks

Let the message space M denote the set of possible next alphabetic symbols
(e.g., 62 symbols for upper, lower, digits, or any application-specific alphabet).
Let M € M denote the prover’s next true symbol.

Let there be six perceptual leaves (color/shape/orientation zones), in-
dexed by L = 0,1,2,3,4,5. A one-time projection P is a randomized map-
ping that, for the epoch (round window) in question, disposes elements of M into
the six leaves so that each leaf receives an equiprobable fraction of the alpha-
bet, and importantly, the projection P is one-time and entropy-dependent
(seeded from fresh randomness). Formally, we can model P as a draw from a
family P of balanced allocations:

P ~ Uniform(P), P:M — L, YleL: |{meM:P(m)=1"_}~]|M|/6.



“We choose a random projection that maps the alphabet to six leaves with
equal load.”

Let R denote the ring-rotation diffusion state selected uniformly from a
configuration space with cardinality

z = 30 x 30 x 12 = 10,800.

“The ring state has ten thousand eight hundred possibilities.”

R governs how symbol instances (glyphs, tiles, or positions) drift across the
canvas via ring-like shifts, think concentric rings with 30 angular slots, 30 radial
slots, and 12 ring layers. R is freshly sampled per epoch (and, if desired, per
round), and its effect is that even if the attacker knew P, they do not know
where instances occur without R.

Let K denote the private map, a hidden bijection K : L. — S, where S is a
set of six private synonyms (e.g., [up, down, left, right, forward, back]). The
size of the K-space is

|K| = 6! = 720.

“There are seven hundred twenty private maps.”

During a round, the verifier issues a challenge mask Z € L (or a one-hot
vector mask over the six leaves), and the prover emits a masked response
Y € L that the verifier can check without seeing the raw leaf index S = P(M).
Two natural masking rules are:

e Modular addition on indices: Y = § @ Z with @ meaning addition
modulo 6.

¢ XOR on one-hot encodings: encode S and Z as one-hot vectors in
0,1% and set Y = S @ Z (bitwise XOR).

We will write the index-space version,

Y =SaZ S=PM)eL.

“The observed response equals the secret leaf index plus the mask modulo
Given Z, the verifier can cancel Z and check whether (Y © Z) matches
the asserted leaf index implied by the prover’s private map and the verifier’s
ephemeral placement rules. What the verifier cannot learn is K or M; they
only learn consistency across rounds.

The transcript C' consists of the public capsule metadata for the epoch
(including the hash of P’s seed and any R metadata, not the raw values them-
selves), the sequence of masked responses Y1,..., Y}, the challenges Z1, ..., Z},
and the final accept bit.

Six.




3. Shannon Perfect Secrecy in the Alphabetic Ge-
ometry

3.1 Statement of perfect secrecy

We aim to show that under correct operation (fresh P, fresh R, balanced
probes/masks), the transcript C' leaks nothing about M. A minimal statement
is:

PM=m|C=c) = P(M=m) forallme M,ceC,

“The posterior of the message given the transcript equals the prior.”

Because C' is determined by (Y7,...,Y}) and public challenge values, it suf-
fices to show that, per round, Y is independent of M. If for each round i,
Y; L M, and the public metadata merely commits to the existence of one-time
seeds without exposing them, then the whole transcript is independent.

3.2 Why one-time projection + mask force independence

Fix a round and suppress the subscript i. Let S = P(M) denote the secret leaf
index. If P is uniform and fresh for the epoch, then for any fixed m we have:

P(S=¢|M=m) =L welL

“Conditioned on any message, the secret leaf is uniform over six choices.”
If Z is an independent uniform mask in L and Y = S @ Z, then for each
m and each observed y:

P(Y=y|M=m) =) PS=(|M=mP(Z=yol) = t & =1
leL 4

“With a uniform secret leaf and a uniform mask, the observed response is
also uniform.”

Thus Y is uniform and independent of M. This is the exact algebra that
makes the classical one-time pad perfectly secret: a uniform message masked
with a uniform independent key yields a uniform ciphertext independent of the
message. Here the “message” that reaches the observable channel is the leaf
index S = P(M); P plays the role of a per-epoch randomization that equalizes
the distribution of S given M, and Z is the per-round mask that removes any
remaining structure.

Formally,

I(M;Y) = 0 and I(M;C)=0.

“The mutual information between the message and the observed response,
and between the message and the whole transcript, is zero.”



3.3 Role of diffusion R

The ring-rotation diffusion state R does not need to carry enormous entropy
per se to ensure perfect secrecy, P and Z already suffice for I(M;Y) = 0, but
R supplies essential operational robustness:

1. No spatial/frequency residue. Diffusion spreads the whereabouts of
symbol instances across x possible canvas dispositions so that even a pow-
erful observer who tries to correlate positions across rounds sees no stable
layout.

2. No cross-epoch carryover. Because R is fresh together with P, posi-
tions and local neighborhoods in one epoch are stochastically unrelated to
those in the next.

Quantitatively, R sampled from = = 10,800 provides logs(z) &~ 13.40 bits
of additional randomness per independent use. While 13.40 bits is modest on
its own, its value compounds wherever R influences multiple independent latent
placements, see §6 for how this multiplies.

4. Confusion by a Private Map and the Second-
Layer Search Space

4.1 Private bijection over six leaves

A central ingredient is the private map K € Sg, a permutation of six leaves into
six synonyms. The “confusion” property is succinct: the observable symbol is
a synonym label, not the leaf’s public identity. Without knowledge of K, the
same observed synonym can mean different public leaves across provers; and
within a single prover, it associates to different public leaves across epochs due
to new P and R. The cardinality is

|Sg| = 6! = 720, H(K) = logy(6!) ~ 9.492 bits.

“There are seven hundred twenty possible private maps, giving about nine
and a half bits of entropy.”

Although H(K) alone is small, it composes with other randomness sources.
The attacker cannot infer K from transcripts because the transcripts are inde-
pendent of M and therefore do not carry any consistent alignment signal; any
attempt to fit K becomes a search through an underdetermined model fed with
independent noise.

4.2 Second-layer combinatorics with ring-rotation diffusion

The ring-rotation diffusion space z = 10,800 multiplies when attached to inde-
pendent latent degrees. Two models are relevant:



1. Per-round model (conservative and realistic). If the ring-rotation
state refreshes per round, say h rounds per proof, then the joint hidden
state per proof has size at least |K| -z = 720 - 10800".

2. Upper-bound factorial model (pessimistic to the attacker). If
the diffusion state can be treated as independently associated with each
private-map degree, i.e., x choices per permutation component, then the
hidden state explodes to z%, i.e.,

2% = 108007%°.

“The upper-bound space equals ten thousand eight hundred raised to the
seven hundred twentieth power.”

The latter is intended as a design-space upper bound the attacker must
contemplate when they cannot tell which diffusion choices bind to which private-
map degrees. Its size is extreme:

logy,(10800™°) = 7201og;,(10800) ~ 720 x 4.033423755 ~ 2904.065,

SO

10800720 ~ 102904.065 ~ 29647.095.

“The space is about ten to the two-thousand nine hundred four, equivalently
around two to the nine-thousand six hundred forty-seven.”

We emphasize: the core secrecy claim (no information leakage) does not
rely on large search spaces; it is information-theoretic given fresh P and Z.
The 2% factor matters for brute-force fantasies when an attacker dreams of
enumerating hidden states rather than learning from transcripts.

5. All Values Equally Probable: No Frequency, No
Correlation, No Residue

5.1 Equiprobability of observed responses

From §3, for each round and any m € M,
PY=y|M=m) = ¢ forallye L.

“Whatever the message is, each observed response is equally likely, one sixth.”

Therefore, any empirical frequency table the attacker builds for Y is flat;
the law of large numbers converges the table to uniform. There is no class-
conditional bias to learn, no signature to correlate across rounds or across
sessions, and no residual statistics tied to M or K. This defeats frequency
analysis, n-gram analysis, and any co-occurrence mining: the observable
layer is engineered to be statistically featureless about the hidden values.



5.2 Equiprobability of positions and placements

Because R renews and re-disposes symbol instances over the ringed canvas,
any attempt to build spatiotemporal correlations across sessions collapses. The
attacker cannot exploit, say, “symbol A tends to appear near radius 12 at angle
17" because the joint distribution of positions changes with R. With balanced
P and independent R, the spatial marginals are uniform within their design
tolerances; across epochs, they are independent.

5.3 Why quantum does not change equiprobability

A quantum computer can speed up search, but it cannot manufacture infor-
mation where none exists. If I(M;C) = 0, then for any algorithm (classical
or quantum), the posterior remains the prior. No amplitude-amplification can
amplify a nonexistent bias. This is the deepest reason “quantum gains noth-
ing” in this design: the secrecy is information-theoretic at the interface,
not computational.

6. Complexity Landscape for Attackers

6.1 Baseline: Information-theoretic futility

If an attacker’s workflow is “observe C'; infer M,” perfect secrecy says there is
no better inference than the prior. More formally, for any estimator M (C),

Pr[M(C) = M] = max P(M =m) (no a-posteriori improvement).

“The best guess after seeing the transcript is still just the prior best guess.”

The attacker may instead target hidden state: K, R, and any latent seeds
for P. But C' remains non-informative about these as well under the equiprob-
ability conditions; hence the attacker receives no a-posteriori narrowing of
the search space from data.

6.2 Brute force over private maps and ring states

Let us tabulate two search models.
Model A (per-round). There are |K| = 720 private maps and = = 10800
ring states per round, assumed independent across h rounds. The space is

Sa = 720-10800", log,Sa = log, 720 + hlog, 10800 ~ 9.492 + 13.399h.

“In the per-round model, the search space has seven hundred twenty times
ten thousand eight hundred to the power h possibilities.”



Model B (upper-bound factorial). Each of the 6! private-map degrees
may be associated with an independent ring-state, this reflects a coupling pat-
tern hopelessly opaque to the attacker. The space is

Sp = 108007%°, log, Sp ~ 9647.095 bits.

“In the factorial upper bound, the space is about nine thousand six hundred
forty-seven bits.”

Even Model A grows quickly: with A = 32 rounds (a short interactive
proof), logy Sa & 9.492 + 32 x 13.399 ~ 438.3 bits, already too large to search,
particularly because the transcript does not provide a correctness oracle beyond
the single accept bit at the end. Model B is astronomically larger.

6.3 Quantum search: Grover bounds do not help enough

Grover’s algorithm reduces the expected number of queries from N to O(v N)
for unstructured search. Applying this to the spaces above:

e For S, with, say, h = 32, a ~ 238 space becomes ~ 22!7, still out of
reach.

e For Sp ~ 29647 Grover leaves ~ 24823 even more fantastical.

Crucially, Grover presumes an oracle that identifies correct candidates.
In our setting, the only oracle is a live interaction with the legitimate verifier
or a perfect simulator of the one-time projection and mask sequence, both un-
available to the attacker without the very secrets they are trying to discover.
Without an oracle, Grover’s algorithm does not instantiate.

6.4 No algebraic structure for Shor or number-theoretic
attacks

Shor’s algorithm targets discrete logarithms and factoring; hidden subgroup
methods require group structure. Our construction intentionally exposes no
algebraic trapdoor at the transcript layer: it is PRF-level masking on a small
alphabet with one-time randomization, not a modular exponentiation with a
known modulus. There is nothing to diagonalize or period-find.

7. Human and Agent Efficiency: Why Solving Is
Fast for the Right Party

7.1 Gestalt search over six leaves

Humans are adept at preattentive feature detection: color, orientation,
and shape pop-out effects enable near-instant localization of a target cluster



among distractors. The six-leaf partition capitalizes on this: each leaf is visually
distinct; the target alphabetic class (e.g., uppercase, lowercase, digits, or any
custom grouping) is clearly associated with one leaf by the private map K.
The human solver’s loop per round is:

1. Orient to the six leaves. Each leaf has a distinctive gestalt; the human
registers them subconsciously.

2. Recall K. The human remembers “for me, ‘up’ means the leaf that
currently carries lowercase (say).”

3. Locate the symbol cluster. The ring-rotated positions do not hinder
recognition because the category lives on the leaf; the exact pixel coordi-
nates are immaterial.

4. Mask response. Given the challenge Z, the human computes Y = S® Z
(six-way modular shift) by mental arithmetic or a mnemonic, and responds
with the synonym corresponding to Y.

5. Repeat. Consistency across rounds yields acceptance.

Every sub-step is constant-time with practiced use; the difficulty is bounded
and does not scale with the magnitude of the attacker’s search space. This is
the moral asymmetry: the right party knows where to look; the wrong
party sees white noise.

7.2 Agent (AI) execution

An agent (software prover) performs the same steps deterministically:
e Compute S = P(M) from the one-time projection seed.
e Compute Y =56 7.
e Emit the synonym label associated with index Y under K.

The runtime is O(1) per round given local access to the seeds. Memory
is O(1) because K is only six elements and the projection seed is a fixed-size
value. Verification is similarly constant-time per round. Thus, efficiency is
not at odds with secrecy: perfect secrecy is achieved by design choices at the
interface, not by computational heaviness.

8. XOR (or Modular) Masking: The Algebra That
Eliminates Leakage

The algebra of masking is the fulcrum of the “no residue” property. Let S €

0,...,5 be the secret leaf index, Z the mask, and Y = S@® Z. The attacker sees
Y and Z but not S. If Z is uniform and independent, then for any s and y,
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P(Y:y\S:s):P(Z:yes):%,

“Conditioned on the secret index, each observed response is still one sixth
likely.”

Hence Y is independent of S and therefore of M. The rule generalizes im-
mediately to XOR with one-hot encodings; we keep modular indices for clarity.

A frequent misunderstanding is: “But the attacker sees many Y'’s; surely
something leaks?” No. If the Z’s are fresh and independent per round and the
projection P is fresh per epoch, the joint distribution of (Y7,...,Y},) remains
the product of six-way uniforms. There is no statistic the attacker can compute
whose expectation differs across messages, and therefore no hypothesis test
with power above random guessing.

9. Perfect Secrecy Proof Sketch with Formal Con-
ditioning
For completeness, we formalize the independence claim with conditioning on
the latent variables. Let C' denote the transcript of a single round; extend to h
rounds by independence.

Let the latent tuple be (P, R, K, Z) and the observed be Y. We wish to show
I(M;Y) = 0. Because Z is public yet fresh and because P and R are one-time

latent values whose seeds are not revealed, we condition on Z only (the rest are
integrated out).

PY=y|M=m)=> Y Y PY=y|M=mP=pR=rK=k)Pprk)
pEP reR k€S,

= S P(S@Z=y|S = p(m) PH)Pr)P(k)

p,rk
=Y P(Z=yop(m)) P(p)P(r)P(k)
p,r.k
= Z [é] P(p) (since Z uniform, r, k irrelevant)
P
_1
G

“After summing over the one-time projection, ring state, and private map,
the probability of any observed response is one sixth.”

A symmetric derivation shows P(M = m | Y = y) = P(M = m), and
therefore I(M;Y) = 0.
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10. Practical Security: “No Residue” in the Tran-
script and Beyond

The above is a mathematical statement about the observable Y’s. In practice,
adversaries try more: timing analysis, interaction patterns, or cross-context
linkages. The design addresses them:

e Timing and Ul jitter. Quantizing response windows and adding UT jit-
ter prevents timing distributions from becoming user-specific fingerprints.

e Session isolation. Each epoch carries fresh (P, R), and identifiers bind
to the epoch only; there is no stable cross-epoch handle.

e Balanced probes. The verifier ensures that the distribution of challenges
Z is uniform and independent across rounds; this prevents adversarial
choice of Z sequences that bias the observed Y’s.

With these, the transcript remains featureless with respect to M and K. The
attacker’s only avenues are off-channel (e.g., exploiting implementation bugs),
which are orthogonal to the cryptographic core and addressable by standard
hardening.

11. Interpreting 2™ and Other Spaces: Clarity on
Bounds

A careful reader may ask: “Is 720 really the search space?’ The right answer is
twofold:

1. For information leakage: The size of any hidden space is irrelevant,
perfect secrecy has already said transcripts leak nothing. Even if z = 2
and 6! = 1, the distributional independence guarantees I(M;C) = 0 as
long as the one-time properties hold.

2. For brute-force enumeration: When an attacker cannot learn from
data, they sometimes imagine enumerating latent states; then bounds
matter. The per-round model yields 720 - 10800". The upper-bound
factorial model yields 1080072°. The latter is conceptually appropriate
when multiple independent ring-rotation choices attach to the fac-
torial degrees of the private map, and the attacker cannot disambiguate
how these attach. It is explicitly an upper bound: the mere existence of
such an attachment mechanism forces the attacker’s uncertainty to grow
multiplicatively with the number of independent attachments.

Either way, no plausible computation, classical or quantum, can traverse
such spaces in the millisecond interaction windows that define the ceremony.
And none of this helps create information where the transcript has none.
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12. Worked Numbers and Sanity Checks

12.1 Bits of entropy
o H(K) =log,(6!) = 9.492 bits.
o H(R) =10g,(10800) =~ 13.399 bits per independent diffusion choice.

e If R refreshes per round with h = 24 rounds, H(R"™) ~ 24 x 13.399 ~
321.6 bits in the per-round model.

12.2 Upper-bound crater
o H(2%) = T720log,(z) ~ 720 x 13.399 ~ 9647.1 bits.

e Groverized cost: =2 248235 still intractable.

12.3 False acceptance (soundness) under random guessing

Let h be the number of rounds and suppose strict acceptance. A random im-
personator (no K, no M) has per-round success probability 1/6. The chance of

fluking all rounds is
h
1

“False accept equals one sixth to the power h.”

With h = 10, Ppa ~ 1.65x1078; with h = 20, Ppa ~ 2.7x 1076, Threshold-
acceptance variants (allowing a slip or two) are governed by binomial tails, which
remain negligible for modest h.

These figures are orthogonal to secrecy but underscore that usability (few
rounds) and security (tiny impersonation risk) coexist comfortably.

13. Why the Human Mind Is Fast (and the At-
tacker Is Not)

Humans recognize categories in clutter without serial enumeration. The six-
leaf layout amplifies preattentive cues: a glance suffices to decide “my category
is in that leaf.” The XOR /mod-6 masking is trivial mental arithmetic; the
human never needs to remember a large table, only a six-way permutation K
and a “rotate by Z” instruction. This is fast, repeatable, and error-tolerant.

Contrast the attacker: with no access to K and no stable mapping from
the observed synonyms to public leaves (because P is one-time and R diffuses
placements), the attacker’s best attempt is exhaustive search over K and R (and
possibly P seeds). There is no gradient to climb and no statistic to exploit.
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This is what “no residue” means: after the ceremony, the attacker’s posterior is
the prior.

14. Quantum Adversaries: No Advantage With-
out Structure or Signal

Quantum algorithms excel when either:

e There is structure (periodicity, group homomorphisms) to exploit (e.g.,
Shor).

e There is an oracle that identifies winning states so amplitude amplifica-
tion finds a needle faster (Grover).

Our design offers neither. The observable layer is structureless (equiprob-
able outputs), and there is no oracle available to the attacker to verify guesses
about K or R off-line. In an on-line interaction, the verifier does not aid an
attacker; and even if an attacker queried a verifier, the queries are rate-limited,
audited, and tied to one-time epochs whose seeds the attacker cannot replay.
Thus, quantum cannot help: it neither introduces bias into the data nor
obtains an oracle with sufficient bandwidth to matter.

15. Operational Requirements to Preserve Perfect
Secrecy

Shannon perfect secrecy is a mathematical condition, but its preservation in
practice depends on operational discipline:

1. Fresh one-time projection P per epoch. Do not reuse P across
distant sessions; cross-epoch reuse can, in theory, allow correlation if other
controls fail.

2. Uniform, independent masks Z. Any bias or predictability in Z would
break the algebra P(Y =y | M =m) = 1/6.

3. Balanced leaves and diffusion. Ensure that the allocation of symbols
to leaves is as equal as possible and that ring-rotations are fresh. Minor
imbalances are tolerable if they are independent of M; but engineering
strives for equal loads.

4. Isolate epoch identifiers and hash seeds. Public metadata should
commit to freshness without revealing seeds sufficient to invert P or R.

5. UI/Timing hygiene. Quantize response windows; add jitter where help-
ful; suppress side channels.

14



With these, the perfect-secrecy proofs apply as written.

16. Synthesis: Perfect Secrecy by Design, Not by
Difficulty

It is tempting to conflate hardness with secrecy. This dissertation stresses the
opposite: secrecy stems from independence, engineered by one-time ran-
domized projection P and per-round masking Z; difficulty is merely a fallback
when someone insists on enumerating states anyway.

e Secrecy claim: I(M;C) = 0 because Y = S®&Z with S = P(M) uniform
and Z uniform.

e No residue: all observed values are equally probable; there is no fre-
quency or correlation structure to mine.

e Brute-force crater: private map 6!, ring rotations x = 10800 per ap-
plicable degree, yielding 2% in the upper-bound model or 720 - 2" in the
per-round model, both enormous.

e Quantum impotence: without structure or an oracle, no advantage
exists; even with Grover fantasy, exponents remain prohibitive.

The human/agent efficiency sits orthogonally to these guarantees: percep-
tual Gestalt search across six leaves and constant-time masking operations make
proving fast and natural. The attacker’s view remains white noise.

17. Conclusion

We have shown, with formal statements and practical elaboration, how the
combination of a one-time, entropy-dependent projection (OTP), ring-
rotation diffusion across an x = 30 x 30 x 12 configuration space, confusion
via a private six-way bijection and its 6! second-layer permutations, and
masked responses yields Shannon-style perfect secrecy for the interactive
transcript. The equality

PM=m|C=c)=P(M=m) VYm,c

“The probability of the message given the transcript equals the prior proba-
bility of the message for every message and transcript.”

holds because each observed response is, by construction, uniform over
six possibilities and independent of the hidden symbol. Consequently, the
attacker obtains no statistical residue, no biases, no correlations, no frequen-
cies, from which to infer anything. If the attacker fantasizes about guessing the
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hidden state instead, they face spaces that scale at least as 720 - 10800" and,
in the natural upper bound, as 1080072 ~ 102994, The quadratic speedup of
Grover’s algorithm leaves these emphatically infeasible; and more importantly,
quantum computation cannot informatively post-process statistically
independent data.

The system’s utility for honest provers, human or agent, derives from a clean
asymmetry: the prover holds the private map and knows the next symbol, en-
abling Gestalt-fast localization and instant masked responses; the adversary
holds neither and sees only featureless noise. This is the heart of “knowing with-
out showing”: the right knowledge makes the proof effortless; the wrong vantage
reduces the world to uniformity.

In sum, the design achieves what Shannon prescribed: all values are
equally probable at the observable interface. The attacker gains nothing,
computationally, statistically, or quantum-mechanically, because there is noth-
ing to gain.
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